Home
Class 12
MATHS
If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alp...

If `A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}]` then

A

If n is odd `alpha -1 ,beta = 0`

B

if n is odd `alpha =-1 , beta= 0 `

C

if n is even `alpha =1 , beta =0`

D

if n is even,` alpha =-1 ,beta =0 `

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of the quadratic equation x^2 + bx - c = 0 , the equation whose roots are b and c , is a. x^(2)+alpha x- beta=0 b. x^(2)-[(alpha +beta)+alpha beta]x-alpha beta( alpha+beta)=0 c. x^(2)+[(alpha + beta)+alpha beta]x+alpha beta(alpha + beta)=0 d. x^(2)+[(alpha +beta)+alpha beta)]x -alpha beta(alpha +beta)=0

A nucleus with Z =92 emits the following in a sequence: alpha,beta^(-),beta^(-),alpha,alpha,alpha,alpha,alpha,beta^(-),beta^(-),alpha,beta^(+),beta^(+),alpha . The Z of the resulting nucleus is

If x=a + b, y= a alpha + b beta, z= a beta + b alpha , where alpha and beta are complex cube roots of unity, then show that xyz = a^(3) + b^(3)

The value of the determinant Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)| , is

If alpha != beta but, alpha^(2) = 4alpha - 2 and beta^(2) = 4beta - 2 then the quadratic equation with roots (alpha)/(beta) and (beta)/(alpha) is

If A(alpha,beta)=[[cosalpha,sinalpha,0],[-sinalpha,cosalpha,0],[ 0, 0,e^(beta)]],t h e nA(alpha,beta)^(-1) is equal to a. A(-alpha,-beta) b. A(-alpha,beta) c. A(alpha,-beta) d. A(alpha,beta)

Factorise alpha^2 +beta^2 + alpha beta

If x = a + b , y = a alpha + b beta , z = a beta + b alpha where alpha and beta are complex cube roots of unity , show that x^(3) +y^(3) + z^(3) = 3 (a^(3)+ b^(3))

If tan(2alpha+beta)=x & tan(alpha+2beta)=y , then [ tan3(alpha+beta)]. [ tan(alpha-beta)] is equal to (wherever defined)

If alpha ne beta but alpha^(2)= 5 alpha - 3 and beta ^(2)= 5 beta -3 then the equation having alpha // beta and beta // alpha as its roots is :