Home
Class 12
MATHS
If matrix A =[{:( a,b,c),(b,c,a),(c,a,b)...

If matrix A `=[{:( a,b,c),(b,c,a),(c,a,b) :}]` where a,b,c are real positive number ,abc =1 and `A^(T) A = I ` then
Which of the following is/are true

A

`a+b+c= 1`

B

`a^(2)+b^(2) +c^(2) =1`

C

` ab+bc+cane0`

D

`a^(3) +b^(3) +c^(3)= 4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrix \( A \) and the conditions provided. The matrix \( A \) is defined as: \[ A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \] with the conditions that \( abc = 1 \) and \( A^T A = I \). ### Step 1: Compute \( A^T \) The transpose of matrix \( A \) is obtained by swapping rows with columns: \[ A^T = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \] ### Step 2: Compute \( A^T A \) Now, we will multiply \( A^T \) and \( A \): \[ A^T A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \] Calculating the elements of \( A^T A \): - The (1,1) entry: \[ a^2 + b^2 + c^2 \] - The (1,2) entry: \[ ab + bc + ca \] - The (1,3) entry: \[ ac + ba + cb \] - The (2,1) entry: \[ ba + cb + ac \] - The (2,2) entry: \[ b^2 + c^2 + a^2 \] - The (2,3) entry: \[ bc + ca + ab \] - The (3,1) entry: \[ ca + ab + bc \] - The (3,2) entry: \[ cb + ac + ba \] - The (3,3) entry: \[ c^2 + a^2 + b^2 \] Thus, we have: \[ A^T A = \begin{pmatrix} a^2 + b^2 + c^2 & ab + bc + ca & ac + ba + cb \\ ba + cb + ac & b^2 + c^2 + a^2 & bc + ca + ab \\ ca + ab + bc & cb + ac + ba & c^2 + a^2 + b^2 \end{pmatrix} \] ### Step 3: Set \( A^T A = I \) Since \( A^T A = I \), we know that: \[ A^T A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] From this, we can derive the following equations: 1. \( a^2 + b^2 + c^2 = 1 \) 2. \( ab + bc + ca = 0 \) ### Step 4: Analyze the conditions Given \( abc = 1 \), we can use the identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] Substituting \( abc = 1 \) and \( ab + ac + bc = 0 \): \[ a^3 + b^3 + c^3 - 3 = (a + b + c)(1 - 0) \] This simplifies to: \[ a^3 + b^3 + c^3 = a + b + c + 3 \] ### Step 5: Solve for \( a + b + c \) From the earlier equation \( a^2 + b^2 + c^2 = 1 \) and using the identity \( (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \): \[ (a + b + c)^2 = 1 + 2(0) = 1 \] Thus, \( a + b + c = 1 \). ### Conclusion Now we can evaluate the options based on our findings: 1. **True**: \( a + b + c = 1 \) 2. **False**: \( ab + bc + ca \neq 0 \) (it equals 0) 3. **True**: \( a^3 + b^3 + c^3 = 3 \) (from our derived equation) 4. **True**: \( a^2 + b^2 + c^2 = 1 \)
Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c are positive real numbers such that a+b+c=2 then, which one of the following is true?

If a, b, c are positive real numbers such that a+b+c=p then, which of the following is true?

If a+b=15, b + c =10 , and a + c = 13 , which of the following is true ?

Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positive numbers a b c=1a n dA^T A=I , then find the value of a^3+b^3+c^3dot

Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positive numbers a b c=1a n dA^T A=I , then find the value of a^3+b^3+c^3dot

If a,b,c are distinct positive real numbers, then

For all real number a, b and c such that a > b and c < 0. Which of the following inequalities must be true?

The point P(a,b), Q(c,d), R(a,d) and S(c,b) , where a,b,c ,d are distinct real numbers, are

Let a,b,c be positive real numbers with abc=1 let A =[{:(a,b,c),(b,c,a),(c,a,b):}] if A ^(T) A =I where A^(T) is the transpose of A and I is the identity matrix , then determine the value of a^(2) +b^(2)+c^(2)

If three positive real numbers a, b, c are in AP with abc = 64, then minimum value of b is: