Home
Class 12
MATHS
The number of real solution of equation ...

The number of real solution of equation `e^(6x)+e^(4x)+2e^(3x)+12e^(2x)+e^(x)-1=0`

A

0

B

1

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of real solutions of the equation \[ e^{6x} + e^{4x} + 2e^{3x} + 12e^{2x} + e^{x} - 1 = 0, \] we can define a function \( f(x) \) as follows: \[ f(x) = e^{6x} + e^{4x} + 2e^{3x} + 12e^{2x} + e^{x} - 1. \] ### Step 1: Differentiate the function We will differentiate \( f(x) \) to analyze its behavior: \[ f'(x) = \frac{d}{dx}(e^{6x}) + \frac{d}{dx}(e^{4x}) + \frac{d}{dx}(2e^{3x}) + \frac{d}{dx}(12e^{2x}) + \frac{d}{dx}(e^{x}). \] Using the derivative of \( e^{kx} \) which is \( ke^{kx} \): \[ f'(x) = 6e^{6x} + 4e^{4x} + 6e^{3x} + 24e^{2x} + e^{x}. \] ### Step 2: Analyze the derivative Notice that all terms in \( f'(x) \) are positive for all \( x \): - \( 6e^{6x} > 0 \) - \( 4e^{4x} > 0 \) - \( 6e^{3x} > 0 \) - \( 24e^{2x} > 0 \) - \( e^{x} > 0 \) Thus, we conclude that: \[ f'(x) > 0 \quad \text{for all } x \in \mathbb{R}. \] ### Step 3: Determine the nature of the function Since \( f'(x) > 0 \), the function \( f(x) \) is strictly increasing. This means that \( f(x) \) can cross the x-axis at most once. ### Step 4: Evaluate the function at specific points Now, we will evaluate \( f(x) \) at two points to determine the sign of the function: 1. **At \( x = 0 \)**: \[ f(0) = e^{0} + e^{0} + 2e^{0} + 12e^{0} + e^{0} - 1 = 1 + 1 + 2 + 12 + 1 - 1 = 16 > 0. \] 2. **As \( x \to -\infty \)**: As \( x \) approaches \(-\infty\), all terms involving \( e^{kx} \) (where \( k > 0 \)) approach 0: \[ f(-\infty) = 0 + 0 + 0 + 0 + 0 - 1 = -1 < 0. \] ### Step 5: Conclusion Since \( f(-\infty) < 0 \) and \( f(0) > 0 \), and \( f(x) \) is strictly increasing, it must cross the x-axis exactly once. Therefore, there is exactly one real solution to the equation. Thus, the number of real solutions of the equation \[ e^{6x} + e^{4x} + 2e^{3x} + 12e^{2x} + e^{x} - 1 = 0 \] is \[ \boxed{1}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of real solutions of the equation e^(x)=x is

The number of real roots of the equation e^(6x)-e^(4x)-2e^(3x)-12e^(2x)+e^(x)+1=0 is :

The number of real solution of the equation e^(x)+x=0, is

The number of real solutions of the equation, e^(4x)+e^(3x)-4e^(2x)+e^(x)+1=0 is

The number of real solutions of sin e^(x)*cos e^(x)=2^(x-2)+2^(-x-2) is

The number of solution of the equation e^(2x)+e^(x)+e^(-2x)+e^(-x)=3(e^(-2x)+e^(x))

The number of real solutions of the equation e^(|x|)-|x|=0 , is

The number of real solutions of the equation 2+|e^x-2|=e^x(e^x-4) is

The number of solution of the equation e^(|x|)+|x|+e^(|x|)=4

Find number of real roots of equation e^(4x) + e^(3x) - 4e^(2x) + e^(x) + 1 = 0 is