Home
Class 12
MATHS
(x-k)/1=(y-2)/2=(z-3)/1, (x+1)/1=(y+2)/2...

`(x-k)/1=(y-2)/2=(z-3)/1, (x+1)/1=(y+2)/2=(z+3)/1` coplanar then find k

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

IF the strasighrt line (x-2)/1=(y-3)/1=(z-4)/0 and (x-1)/k=(y-4)/2=(z-5)/1 are coplanar then the value of k is (A) -3 (B) 0 (C) 1 (D) -2

The lines (x-2)/1=(y-3)/2=(z-4)/(-2k) and (x-1)/k=(y-2)/3=(z-6)/1 are coplanar if

The lines (x-2)/1=(y-3)/1=(z-4)/(-k) and (x-1)/k=(y-4)/2=(z-5)/1 are coplanar if (A) k=3 or -3 (B) k=0 or -1 (C) k=1 or -1 (D) k=0 or -3

The lines (x-2)/1=(y-3)/1=(z-4)/(-k) and (x-1)/k=(y-4)/2=(z-5)/1 are coplanar if (A) k=0 or -1 (B) k=1 or -1 (C) k=0 or -3 (D) k=3or-3

If lines (x-1)/2=(y+1)/3=(z-1)/4 and (x-3)/1=(y-k)/2=z/1 intersect then find k and hence find the equation of the plane containing these lines