Home
Class 12
MATHS
If vecx and vecy are two vector such tha...

If `vecx and vecy` are two vector such that `abs(vecx)=abs(vecy) and abs(vecx-vecy)=nabs(vecx+vecy)` then angle between `vecx and vecy`

A

`cos^-1((1-n)/(1+n))`

B

`cos^-1((1+n^2)/(1-n^2))`

C

`cos^-1((1+n)/(n-2))`

D

`cos^-1((1-n^2)/(1+n^2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given conditions involving the vectors \(\vec{x}\) and \(\vec{y}\). ### Step-by-Step Solution: 1. **Given Conditions**: We know that: \[ |\vec{x}| = |\vec{y}| \] Let \( |\vec{x}| = |\vec{y}| = k \). 2. **Using the Magnitude Condition**: The second condition given is: \[ |\vec{x} - \vec{y}| = n |\vec{x} + \vec{y}| \] Squaring both sides, we get: \[ |\vec{x} - \vec{y}|^2 = n^2 |\vec{x} + \vec{y}|^2 \] 3. **Expanding Both Sides**: We can expand both sides using the properties of dot products: \[ |\vec{x} - \vec{y}|^2 = |\vec{x}|^2 + |\vec{y}|^2 - 2 \vec{x} \cdot \vec{y} \] \[ |\vec{x} + \vec{y}|^2 = |\vec{x}|^2 + |\vec{y}|^2 + 2 \vec{x} \cdot \vec{y} \] Substituting \( |\vec{x}| = |\vec{y}| = k \): \[ |\vec{x} - \vec{y}|^2 = k^2 + k^2 - 2 \vec{x} \cdot \vec{y} = 2k^2 - 2 \vec{x} \cdot \vec{y} \] \[ |\vec{x} + \vec{y}|^2 = k^2 + k^2 + 2 \vec{x} \cdot \vec{y} = 2k^2 + 2 \vec{x} \cdot \vec{y} \] 4. **Setting Up the Equation**: Now substituting these into the squared equation: \[ 2k^2 - 2 \vec{x} \cdot \vec{y} = n^2 (2k^2 + 2 \vec{x} \cdot \vec{y}) \] Rearranging gives: \[ 2k^2 - 2 \vec{x} \cdot \vec{y} = 2n^2 k^2 + 2n^2 \vec{x} \cdot \vec{y} \] 5. **Combining Like Terms**: Bringing all terms involving \(\vec{x} \cdot \vec{y}\) to one side: \[ 2k^2 - 2n^2 k^2 = 2 \vec{x} \cdot \vec{y} (1 + n^2) \] Simplifying gives: \[ 2k^2(1 - n^2) = 2 \vec{x} \cdot \vec{y} (1 + n^2) \] Dividing both sides by 2: \[ k^2(1 - n^2) = \vec{x} \cdot \vec{y} (1 + n^2) \] 6. **Expressing \(\vec{x} \cdot \vec{y}\)**: Recall that: \[ \vec{x} \cdot \vec{y} = |\vec{x}| |\vec{y}| \cos \theta = k^2 \cos \theta \] Substituting this into the equation gives: \[ k^2(1 - n^2) = k^2 \cos \theta (1 + n^2) \] 7. **Canceling \(k^2\)**: Assuming \(k^2 \neq 0\), we can divide both sides by \(k^2\): \[ 1 - n^2 = \cos \theta (1 + n^2) \] 8. **Solving for \(\cos \theta\)**: Rearranging gives: \[ \cos \theta = \frac{1 - n^2}{1 + n^2} \] 9. **Finding the Angle \(\theta\)**: Therefore, the angle \(\theta\) between the vectors \(\vec{x}\) and \(\vec{y}\) can be expressed as: \[ \theta = \cos^{-1}\left(\frac{1 - n^2}{1 + n^2}\right) \] ### Final Answer: The angle between the vectors \(\vec{x}\) and \(\vec{y}\) is: \[ \theta = \cos^{-1}\left(\frac{1 - n^2}{1 + n^2}\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec x and vecy are unit vectors and |vecz| = 2/sqrt7 such that vecz + vecz xx vecx = vecy then find the angle theta between vecx and vecz

If vec x and vecy are unit vectors and |vecz| = 2/sqrt7 such that vecz + vecz xx vecx = vecy then find the angle theta between vecx and vecz

Let veca , vecb and vecc be unit vectors such that veca+vecb+vecc=vecx, veca.vecx =1, vecb.vecx = 3/2 ,|vecx|=2 then find theh angle between vecc and vecx .

Let veca , vecb and vecc be unit vectors such that veca+vecb+vecc=vecx, veca.vecx =1, vecb.vecx = 3/2 ,|vecx|=2 then find theh angle between vecc and vecx .

IF veca=2veci+3vecj+4veck and vecb =4veci+3vecj+2veck find the angle between veca and vecb .

Let vecx, vecy and vecz be unit vectors such that vecx+vecy+vecz=veca, vecx xx(vecyxxvecz)=vecb, (vecx xxvecy)xxvecz=vecc, veca.vecx=3/2, veca.vecy=7/4 and \|veca|=2 . Find vecx,vecy,vecz in terms of veca,vecb,vecc.

If the magnitude of there vectors vec X, vecY and vecZ are 4, 3 and 5, respectively and vecX+vecY=vecZ , then calculate the angle between vecY and vecZ .

STATEMENT-1: If veca,vecb,vecc , are unit vectors such that veca+vecb+vecc=0 and veca.vecb+vecb.vecc+vecc.veca=-(3)/(2) . STATEMENT-2 : (vecx+vecy)^(2)=|vecx|^(2)+|vecy|^(2)+2(vecx.vecy) .

Let veca=2veci+3vecj+4veck and vecb=3veci+4vecj+5veck . Find the angle between them.