Home
Class 12
MATHS
If .^nC0+3.^nC1+5^nC2+7^nC3+ . . .till (...

If `.^nC_0+3.^nC_1+5^nC_2+7^nC_3+ . . .till (n+1) term=2^100*101` then the value of `2[(n-1)/2]` where `[.]` is G.I.F)

A

98

B

97

C

96

D

100

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given and find the value of \(2 \left\lfloor \frac{n-1}{2} \right\rfloor\). ### Step-by-Step Solution: 1. **Understanding the Expression**: The expression given is: \[ \sum_{r=0}^{n} (2r + 1) \binom{n}{r} \] This can be rewritten as: \[ \sum_{r=0}^{n} 2r \binom{n}{r} + \sum_{r=0}^{n} \binom{n}{r} \] 2. **Using Binomial Theorems**: From the binomial theorem, we know: \[ \sum_{r=0}^{n} \binom{n}{r} = 2^n \] For the first part, we can use the identity: \[ \sum_{r=0}^{n} r \binom{n}{r} = n \cdot 2^{n-1} \] Therefore, we have: \[ \sum_{r=0}^{n} 2r \binom{n}{r} = 2n \cdot 2^{n-1} = n \cdot 2^n \] 3. **Combining the Results**: Now substituting back into our expression: \[ n \cdot 2^n + 2^n = (n + 1) \cdot 2^n \] 4. **Setting the Equation**: We are given that: \[ (n + 1) \cdot 2^n = 2^{100} \cdot 101 \] Dividing both sides by \(2^n\): \[ n + 1 = 101 \cdot 2^{100 - n} \] 5. **Finding \(n\)**: To find \(n\), we can analyze the equation. Since \(n + 1\) must be an integer, \(2^{100 - n}\) must also yield an integer. This implies that \(100 - n\) must be non-negative, hence \(n \leq 100\). 6. **Finding \(n\)**: We can set \(n + 1 = 101\) when \(n = 100\): \[ 100 + 1 = 101 \cdot 2^{0} \implies n = 100 \] 7. **Calculating \(2 \left\lfloor \frac{n-1}{2} \right\rfloor\)**: Now we need to find: \[ 2 \left\lfloor \frac{100 - 1}{2} \right\rfloor = 2 \left\lfloor \frac{99}{2} \right\rfloor = 2 \cdot 49 = 98 \] ### Final Answer: Thus, the value of \(2 \left\lfloor \frac{n-1}{2} \right\rfloor\) is \(98\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If .^nC_8=^nC_2 , find .^nC_2

"^mC_1=^nC_2 , then -

If (nC_0)/(2^n)+2.(nC_1)/2^n+3.(nC_2)/2^n+....(n+1)(nC_n)/2^n=16 then the value of 'n' is

If ^(n+1)C_3=2.^nC_2, then n= (A) 3 (B) 4 (C) 5 (D) 6

If S_n=^nC_0.^nC_1+^nC_1.^nC_2+.....+^nC_(n-1).^nC_n and if S_(n+1)/S_n=15/4 , then the sum of all possible values of n is (A) 2 (B) 4 (C) 6 (D) 8

2nC_(3):nC_(2)=44:3 then value of nC_(3) is

If 3^n is a factor of the determinant |{:(1,1,1),(.^nC_1,.^(n+3)C_1,.^(n+6)C_1),(.^nC_2, .^(n+3)C_2, .^(n+6)C_2):}| then the maximum value of n is ……..