Home
Class 12
MATHS
lim(x->pi/2)(sin(cosx)cosx)/(sinx-cosecx...

`lim_(x->pi/2)(sin(cosx)cosx)/(sinx-cosecx)`

A

0

B

1

C

`-1`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

`lim_(x to (pi)/(2)) (sin (cosx) cos x)/( sin x - "cosec"x) `
`=lim_( x to (pi)/(2)) (sin(cosx))/(cosx) xx lim_(x to (pi)/(2)) (cos^(2)x)/( sin x -(1)/(sin x))=1 xx lim_(x to (pi)/(2)) (cos^(2) x sin x)/( sin^(2)x -1) = lim_( x to (pi)/(2)) (sin x)/(-1)=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrar2pi)(cos x-(cosx)^(cosx))/(1-cos x+ln(cosx)) is equal to

Prove that (1+sinx-cosx)/(1+sinx+cosx) +(1+sinx+cosx)/(1+sinx-cosx) =2 cosec x

Prove that (1+sinx-cosx)/(1+sinx+cosx) +(1+sinx+cosx)/(1+sinx-cosx) =2 cosec x

Evaluate, lim_(xto(pi//4)) (sinx-cosx)/(x-pi/4)

lim_(xto pi//3) (2sin(x-pi//3))/(1-2cosx) is

The value of lim_( x -> pi/4 ) (( sinx - cosx )) / ( x - pi/4 )

Evaluate int_(-(pi)/(2))^(pi/2) sin^(3)xcos^(2)x(sinx+cosx)dx .