Home
Class 12
MATHS
If lim(xrarr0)(2a sin x-sin 2x)/(tan^(3)...

If `lim_(xrarr0)(2a sin x-sin 2x)/(tan^(3)x)` exists and is equal to 1, then the value of a is

A

2

B

1

C

0

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

`lim_(x to 0) (2 a sin x-sin2x)/(tan^(3)x)*(1)/(lim_(x to 0) ((sin x)/(x))^(3))(lim_(x to 0)cos^(3)x)`
`=lim_( x to 0) (2 a sin x -sin2x)/(x^(3)) [(0)/(0)"form"] = lim_(x to0)(2a cos x-2 cos 2x)/(3x^(2))` which will exist only if it is in `(0)/(0)` form.
`:.` We must have, `2 a cos theta -2 cos theta =0 rArr a=1`
Further, if a = 1, given limit becomes
`lim_(x to 0) (2 sin x -sin2x)/(tan^(3)x)=lim_(x to 0) (2 sin x (1-cos x))/(sin^(3)x).cos^(3)x=2*lim_(x to 0) ((1-cosx)/(x^(2)))*(1)/(lim_(x to 0) ((sin x)/(x))^(2))*lim_(x to 0) cos^(3)x=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (sin 3x)/x

lim_(xrarr0) (sin4x-sin2x+x)/(x)=?

If lim_(x rarr0)(x^(-3)sin3x+ax^(-2)+b) exists and is equal to 0 then

Evaluate: lim_(xrarr0) (tan x-sin x)/(x^(3))

lim_(xrarr0) (tan 4x)/(tan 2x)

If lim_(xrarr0)(2ax+(a-1)sinx)/(tan^3x)=l ,then a+l is equal to

lim_(xrarr0)(sin (pisin^(2)x))/(x^(2))=

If lim_(xrarr0)(sin2x-a sin x)/(((x)/(3))^(3))=L exists finitely, then the absolute value of L is equal to

If lim_(xrarr0)(sin2x-asinx)/(x^(3)) exists finitely, then the value of a is