Home
Class 12
MATHS
lim(n rarr oo)n sin\ (2 pi)/(3n)*cos\ (2...

`lim_(n rarr oo)n sin\ (2 pi)/(3n)*cos\ (2 pi)/(3n)`

A

`(2pi)/(3)`

B

`(pi)/(6)`

C

`( pi)/(3)`

D

`1`

Text Solution

Verified by Experts

The correct Answer is:
A

`lim_(n to oo) ([n"sin"(2pi)/(3n)])/(((2pi)/(3n)))*("cos" (2pi)/(3n))xx((2n)/(3n))=lim_(n to oo)n*cos((2n)/(3n))xx(2pi)/(3n)=(2pi)/(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(n)sin(a)/(2^(n))

Evaluate: (lim_(n rarr oo)n cos((pi)/(4n))sin((pi)/(4n))

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_(n rarr oo)(pi n)^(2/n) =

lim_ (n rarr oo) (pi) / (6n) [sec ^ (2) ((pi) / (6n)) + sec ^ (2) (2 * (pi) / (6n)) + .... ..... + sec ^ (2) ((n-1) (pi) / (6n)) + (4) / (3)]

lim_( n to oo) (sin ""(pi)/(2n) . sin ""(2pi)/(2n). sin ""(3pi)/(2n)......sin""((n -1) pi)/(2n))^(1//n) is equal to

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)