Home
Class 12
MATHS
If [log2(x/([x]))]geq0, where [.] denote...

If `[log_2(x/([x]))]geq0,` where [.] denote the greatest integer function, then

A

`x in (-oo, oo) ~[0, 1)`

B

`x in ( -oo, 0)`

C

`x in [ 1, oo)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

`["log"(x)/([x])] ge 0`
`rArr log_(2) ((x)/([x])) ge 0 rArr (x)/([x]) ge 1`
`rArr (x-[x])/([x]) ge 0 rArr ({x})/([x]) ge 0`
It implies that .x. is any positive real number greater than or equal to one or x is any non-zero integer.
Promotional Banner

Similar Questions

Explore conceptually related problems

If [log_(2)((x)/([x]))]>=0, where [.] denote the greatest integer function,then

If [log_2 (x/[[x]))]>=0 . where [.] denotes the greatest integer function, then :

If f(x)=[2x], where [.] denotes the greatest integer function,then

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

f(x)=log(x-[x]), which [,] denotes the greatest integer function.

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).