Home
Class 12
MATHS
The number of integral values of x in th...

The number of integral values of x in the domain of `f(x) = sqrt(3-x)+sqrt(x-1)+log{x}` , where {} denotes the fractional part of x, is

A

`[1, pi )`

B

`( 0,2 pi) ~[1,pi) `

C

`(0 ,(pi)/( 2))~{1}`

D

`(0,1)`

Text Solution

Verified by Experts

The correct Answer is:
D

We must have `cos(sin x) ge 0 rArr (pi)/(2) ge sin x ge -(pi)/(2)`
which is true for all real x.
Secondly `log, {x} ge 0`
If `0 lt x lt 1`, then `0 lt {x} le 1 rArr 0 lt x lt 1`
If `x gt 1` then `{x} ge 1`, which is not possible. Thus domain is (0, 1)
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of integral values of x in the domain of f(x)=sqrt(-[x]^(2)+3[x]-2) is

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

The domain of f(x)=sqrt(cos(sin x))+sqrt(log_(x){x}) where {x} denotes fractional part of x .

The domain of f(x)=sqrt(x-1)+sqrt(3-x) is

The domain of f(x)=sqrt(2{x}^(2)-3{x}+1) where {.} denotes the fractional part in [-1,1]

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x).

The domain of f(x)=sqrt(2-log_(3)(x-1)) is

Domain of f(x)=log(1-x)+sqrt(x^(2)-1)