Home
Class 12
MATHS
lim(xto1)(sin(e^(x-1)-1))/(log x) is equ...

`lim_(xto1)(sin(e^(x-1)-1))/(log x)` is equal to

A

0

B

e

C

`(1)/(e)`

D

`1 `

Text Solution

Verified by Experts

The correct Answer is:
D

`lim_(xrarr1)(sin(e^(x-1)-1))/(logx)=lim_(hrarr0)(sin(e^(h)-1))/(log(1+h))` [Putting x - 1 = h]
`=lim_(xrarr0)(sin(e^(h)-1))/(e^(h)-1).(e^(h)-1)/(h).(h)/(log(1+h))`
`=lim_(xrarr0)(sin(e^(h)-1))/(e^(h)-1).(e^(h)-1)/(h).lim_(hrarr0)(h)/(log(1+h))=1.1.1=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr1)(sin(e^(x-1)-1))/(log x) is equal to

Evaluate lim_(xto0) (x(e^(x)-1))/(1-cosx) is equal to

lim_(xto0)(sin^(-1)x-tan^(-1)x)/(x^(3)) is equal to

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then lim_(xto1) (x-1)/(sin(f(x)-2x-1)) is equal to

lim_(xto0)((e^(x)-1)/x)^(1//x)

lim_(xto1) cos^(-1) ((1-sqrt(x))/(1-x)) is equal to