Home
Class 12
MATHS
lim ( x to 0) ( e ^(x ^(2)) -c os x )/( ...

`lim _( x to 0) ( e ^(x ^(2)) -c os x )/( x ^(2)) = `

A

`3/2`

B

`1/2`

C

1

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

`lim_(xrarr0)(e^(x^2)-cosx)/(x^2)=lim_(xrarr0)(e^(x^2)-1+1-cosx)/(x^2)`
`=lim_(xrarr0)(e^(x^2)-1)/(x^2)+lim_(xrarr0)(2sin^(2)""(x)/(2))/(x^2)=1+1/2lim_(xrarr0)((sin""(x)/2)/(x/2))^(2)=1+1/2=3/2`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (x rarr0) (e ^ (x ^ (2)) - cos x) / (x ^ (2))

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

Evaluate: lim_(x rarr0)(e^(x^(2))-cos x)/(x^(2))

lim_ (x rarr0) (e ^ (x) * 2-cos x) / (x ^ (2))

lim_(x rarr0)(e^(x)+e^(-x)-2cos x)/(x sin x)

lim_(x rarr0)(e^(x)+e^(-x)-2cos x)/(x sin x)

lim_(x rarr0)(e^(x^(2))-cos x)/(sin^(2)x) is equal to

Evaluate : lim_(x -> 0 ) ((e^(x^(2)) - cosx )) / x^2

lim_ (x rarr0) (e ^ (x) + e ^ (- x) -2) / (x ^ (2))

Let a =lim _(xto0) (ln (cos 2x ))/( 3x ^(2)) , b = lim _(xto0) (sin ^(2) 2x )/(x (1-e ^(x))), c = lim _(x to 1) (sqrtx-x )/( ln x). Then a,b,c satisfy :