Home
Class 12
MATHS
If lim(xrarr0)(axe^(x)-b log(1+x))/(x^(2...

If `lim_(xrarr0)(axe^(x)-b log(1+x))/(x^(2))=3`, then the value of a and b are respectively.

A

`2,2`

B

`1,2`

C

`2,1`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

`lim_(xrarr0)(ax(1+x/(lfloor1)+x^2/(lfloor2)+.....)-b(x-x^2/2+x^3/(3)-....))/(x^2)=3`
As limit exists, we must have, a - b = 0 and `a/(lfloor1)+b/2=3impliesa=b=2`
Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(xrarr0) (e^(ax)-e^(x)-x)/(x^(2))=b (finite), then

lim_(xrarr0) (x^(2)-3x+2)

If lim_(xrarr0) (cosx+a sinbx)^(1//x)= e^2 , then the values of a and b are

lim_(xrarr0)(2log(1+x)-log(1+2x))/(x^2) is equal to

lim_(xrarr0) (ax+b)/(cx+1)

lim_(xrarr0) (6^(x)-3x^(2)-2^(x)+1)/(x^(2))=?

If lim_(xrarr0) (log (3+x)-log (3-x))/(x)=k , the value of k is

lim_(xrarr0) (ax+x cos x)/(b sinx)

Evalute lim_(xrarr0)((e^(3x)-1)/(x)).