Home
Class 12
MATHS
Find the value of alpha so that ("lim")(...

Find the value of `alpha` so that `("lim")_(xvec0)1/(x^2)(e^(alphax)-e^x-x)=3/2`

Text Solution

Verified by Experts

The correct Answer is:
2

Since the numerator tends to 0 as `xrarr0` so `lim_(xrarr0)((e^(ax)-e^(x)-x)/(x^2))=1/2lim_(xrarr0)((ax^(ax)-e^(x)-1))/(x)`
For the last limit to exist we must have `lim_(xrarr0)(ae^(ax)-e^(x)-1)=0 " ":. " "alpha-1-1=0implies alpha =2`
For `alpha = 2` , the last limit is equal to `1/2lim_(xrarr0)((2e^(2x)-e^(x)-1))/(x)=1/2 lim_(xrarr0)(4e^(2x)-e^x)=3/2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of alpha so that lim_(x rarr0)(1)/(x^(2))(e^(alpha x)-e^(x)-x)=(3)/(2)

Find the value of a so that lim_(xto0) (e^(ax)-e^(x)-x)=3/2.

Let f(x)={cos[x],xgeq0|x|+a ,x<0 The find the value of a , so that ("lim")_(xvec0) f(x) exists, where [x] denotes the greatest integer function less than or equal to x .

The value of lim_(x rarr0)(sin alpha x-sin beta x)/(e^(alpha x)-e^(beta x))

Evaluate: "lim_(x rarr0)((e^(x)-e^(-x))/(2))

(7) Find the value of lim_(x->0) ((e^(x)-1) log(1+x))/(x^(2))

The value of the limit ("lim")_(xvec0)(a^(sqrt(x))-a^(1sqrt(x)))/(a^(sqrt(x))+a^(1sqrt(x))),a >1,i s 4 (b) 2 (c) -1 (d) 0

Find the value of lim_(xrarr0)(e^x-e^(-x))/x

Evaluate: lim_(x rarr0)(e^(x)-e^(-x)-2x)/(x^(3))