Home
Class 12
MATHS
lim(nrarroo) 1/n sum(j=0)^n((2j-1)+8n)/(...

`lim_(nrarroo) 1/n sum_(j=0)^n((2j-1)+8n)/((2j-1)+4n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \[ \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n} \frac{(2j - 1) + 8n}{(2j - 1) + 4n}, \] we will follow these steps: ### Step 1: Rewrite the expression We start with the expression inside the limit: \[ \frac{(2j - 1) + 8n}{(2j - 1) + 4n} = \frac{2j - 1 + 8n}{2j - 1 + 4n}. \] ### Step 2: Simplify the fraction To simplify the fraction, we can divide the numerator and the denominator by \(n\): \[ = \frac{\frac{2j - 1}{n} + 8}{\frac{2j - 1}{n} + 4}. \] ### Step 3: Substitute \(x = \frac{j}{n}\) Now, we can express \(j\) in terms of \(n\) by letting \(x = \frac{j}{n}\). As \(j\) goes from \(0\) to \(n\), \(x\) will go from \(0\) to \(1\). The increment \(j\) can be expressed as \(j = nx\), and thus: \[ \frac{2j - 1}{n} = 2x - \frac{1}{n}. \] As \(n \to \infty\), \(-\frac{1}{n} \to 0\). Therefore, we have: \[ \frac{2j - 1 + 8n}{2j - 1 + 4n} \to \frac{2x + 8}{2x + 4}. \] ### Step 4: Rewrite the sum as an integral Now, we can rewrite the sum as an integral. The limit of the sum can be expressed as: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n} \frac{(2j - 1) + 8n}{(2j - 1) + 4n} \to \int_{0}^{1} \frac{2x + 8}{2x + 4} \, dx. \] ### Step 5: Evaluate the integral Now we will evaluate the integral: \[ \int_{0}^{1} \frac{2x + 8}{2x + 4} \, dx. \] To simplify, we can break it down: \[ = \int_{0}^{1} \left(1 + \frac{4}{2x + 4}\right) dx. \] This gives us two integrals: \[ = \int_{0}^{1} 1 \, dx + 4 \int_{0}^{1} \frac{1}{2x + 4} \, dx. \] The first integral evaluates to: \[ \int_{0}^{1} 1 \, dx = 1. \] For the second integral, we can use the substitution \(u = 2x + 4\), which gives \(du = 2dx\) or \(dx = \frac{du}{2}\). The limits change from \(x = 0\) to \(x = 1\) which corresponds to \(u = 4\) to \(u = 6\): \[ 4 \int_{4}^{6} \frac{1}{u} \cdot \frac{du}{2} = 2 \int_{4}^{6} \frac{1}{u} \, du = 2 [\ln u]_{4}^{6} = 2 (\ln 6 - \ln 4) = 2 \ln \frac{6}{4} = 2 \ln \frac{3}{2}. \] ### Step 6: Combine results Combining both parts of the integral, we have: \[ 1 + 2 \ln \frac{3}{2}. \] ### Final Result Thus, the final result is: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n} \frac{(2j - 1) + 8n}{(2j - 1) + 4n} = 1 + 2 \ln \frac{3}{2}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

alpha=lim_(n rarr oo)sum_(i=1)^(n)sum_(j=1)^(i)(j)/(n^(3)), then [(1)/(alpha)-1] is

S= lim_(nrarroo) sum_(k=0)^n 1/sqrt(n^2 + k ^2)

lim_(nrarroo) sum_(k=1)^(n)(k^(1//a{n^(a-(1)/(a))+k^(a-(1)/(a))}))/(n^(a+1)) is equal to

If A=[a_(ij)]_(n xx n,) where a_(ij)=i^(100)+j^(100) then lim_(n rarr oo)((sum_(i=1)^(n)a_(ij))/(n^(101))) equals

Evaluate lim_(nrarroo) [1/n + 1/(n+1) + 1/(n+2) +…+ 1/(3n)]

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to