Home
Class 12
MATHS
If sintheta+costheta=1/2 then find the v...

If `sintheta+costheta=1/2` then find the value of `16(sin2theta+cos4theta+sin6theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 16(\sin 2\theta + \cos 4\theta + \sin 6\theta) \) given that \( \sin \theta + \cos \theta = \frac{1}{2} \). ### Step-by-Step Solution: 1. **Square the Given Equation**: \[ (\sin \theta + \cos \theta)^2 = \left(\frac{1}{2}\right)^2 \] Expanding the left side: \[ \sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta = \frac{1}{4} \] 2. **Use the Pythagorean Identity**: We know that \( \sin^2 \theta + \cos^2 \theta = 1 \). Thus, we can substitute: \[ 1 + 2\sin \theta \cos \theta = \frac{1}{4} \] 3. **Solve for \( \sin 2\theta \)**: Since \( \sin 2\theta = 2\sin \theta \cos \theta \), we can rearrange the equation: \[ 2\sin \theta \cos \theta = \frac{1}{4} - 1 \] \[ 2\sin \theta \cos \theta = -\frac{3}{4} \] Therefore, \[ \sin 2\theta = -\frac{3}{4} \] 4. **Find \( \cos 4\theta \)**: We use the double angle identity for cosine: \[ \cos 4\theta = 1 - 2\sin^2 2\theta \] First, we need \( \sin^2 2\theta \): \[ \sin^2 2\theta = \left(-\frac{3}{4}\right)^2 = \frac{9}{16} \] Now substituting back: \[ \cos 4\theta = 1 - 2\left(\frac{9}{16}\right) = 1 - \frac{18}{16} = 1 - \frac{9}{8} = -\frac{1}{8} \] 5. **Find \( \sin 6\theta \)**: We can use the identity for \( \sin 3\theta \): \[ \sin 6\theta = \sin(3 \cdot 2\theta) = 3\sin 2\theta - 4\sin^3 2\theta \] We already have \( \sin 2\theta = -\frac{3}{4} \), so we need \( \sin^3 2\theta \): \[ \sin^3 2\theta = \left(-\frac{3}{4}\right)^3 = -\frac{27}{64} \] Now substituting: \[ \sin 6\theta = 3\left(-\frac{3}{4}\right) - 4\left(-\frac{27}{64}\right) \] Simplifying: \[ \sin 6\theta = -\frac{9}{4} + \frac{108}{64} = -\frac{9}{4} + \frac{27}{16} \] Convert \( -\frac{9}{4} \) to sixteenths: \[ -\frac{9}{4} = -\frac{36}{16} \] Thus, \[ \sin 6\theta = -\frac{36}{16} + \frac{27}{16} = -\frac{9}{16} \] 6. **Combine the Results**: Now we can substitute back into the expression: \[ 16(\sin 2\theta + \cos 4\theta + \sin 6\theta) = 16\left(-\frac{3}{4} - \frac{1}{8} - \frac{9}{16}\right) \] 7. **Finding a Common Denominator**: The common denominator for \( 4, 8, \) and \( 16 \) is \( 16 \): \[ -\frac{3}{4} = -\frac{12}{16}, \quad -\frac{1}{8} = -\frac{2}{16}, \quad -\frac{9}{16} = -\frac{9}{16} \] Adding these: \[ -\frac{12}{16} - \frac{2}{16} - \frac{9}{16} = -\frac{23}{16} \] 8. **Final Calculation**: Now multiply by \( 16 \): \[ 16\left(-\frac{23}{16}\right) = -23 \] ### Final Answer: \[ \boxed{-23} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin theta - cos theta =1/29 find the value of sintheta + costheta .

If sintheta +costheta =1 , then the value of sin2theta is equal to

If sintheta+costheta=1 , then the value of sin2theta is

If sintheta+sin^(2)theta=1 , then find the value of cos^(2)theta+cos^(4)theta .

If sin theta+cos theta=(5)/(4) then find the value of sin^(6)theta+cos^(6)theta+7sin^(2)theta*cos^(2)theta

If sin theta+ cos theta= (1)/(2) , then 16(sin (2theta)+ cos (4theta) + sin (6theta)) is equal to

If (sintheta+costheta)/(sintheta-costheta)=3 , then find the value of sin^(4)theta-cos^(4)theta .

If costheta+cos^(2)theta=1 , then find the value of sin^(4)theta+sin^(2)theta .

If sintheta-costheta=1 , then the value of sin^3theta-cos^3theta is __________ .

If 3cot theta=2, find the value of (4sin theta-3cos theta)/(2sin theta+6cos theta)