Home
Class 12
MATHS
If alpha,beta are root of x^2+20^(1/4)x+...

If `alpha,beta` are root of `x^2+20^(1/4)x+sqrt5=0` then find the value of `alpha^8+beta^8`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \alpha^8 + \beta^8 \) where \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( x^2 + 20^{1/4} x + \sqrt{5} = 0 \), we can follow these steps: ### Step 1: Identify coefficients The given quadratic equation is in the form \( ax^2 + bx + c = 0 \). Here, we have: - \( a = 1 \) - \( b = 20^{1/4} \) - \( c = \sqrt{5} \) ### Step 2: Calculate the sum and product of the roots Using Vieta's formulas: - The sum of the roots \( \alpha + \beta = -\frac{b}{a} = -20^{1/4} \) - The product of the roots \( \alpha \beta = \frac{c}{a} = \sqrt{5} \) ### Step 3: Calculate \( \alpha^2 + \beta^2 \) We can find \( \alpha^2 + \beta^2 \) using the identity: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \] Substituting the values we found: \[ \alpha^2 + \beta^2 = (-20^{1/4})^2 - 2\sqrt{5} \] Calculating this gives: \[ \alpha^2 + \beta^2 = 20^{1/2} - 2\sqrt{5} = \sqrt{20} - 2\sqrt{5} = 2\sqrt{5} - 2\sqrt{5} = 0 \] ### Step 4: Calculate \( \alpha^4 + \beta^4 \) Using the identity: \[ \alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2 \] Substituting the values: \[ \alpha^4 + \beta^4 = 0^2 - 2(\sqrt{5})^2 = 0 - 10 = -10 \] ### Step 5: Calculate \( \alpha^8 + \beta^8 \) Using the identity: \[ \alpha^8 + \beta^8 = (\alpha^4 + \beta^4)^2 - 2(\alpha^4 \beta^4) \] We need \( \alpha^4 \beta^4 = (\alpha \beta)^4 = (\sqrt{5})^4 = 25 \). Now substituting: \[ \alpha^8 + \beta^8 = (-10)^2 - 2 \cdot 25 = 100 - 50 = 50 \] ### Final Answer Thus, the value of \( \alpha^8 + \beta^8 \) is \( \boxed{50} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of equation 2x^(2)-3x+5=0 then find the value of alpha^(2)beta+beta^(2)alpha

If alpha,beta are roots of the equation x^(2)-px+q=0, then find the value of (i)alpha^(2)(alpha^(2)beta^(-1)-beta)+beta^(2)(beta^(2)alpha^(-1)-alpha)

If alpha,beta are the roots of 2x^(2)+x+7=0 find the value of alpha^(2)beta+alpha beta^(2)

If alpha,beta,gamma are the roots of 7x^(3)-x-2=0 . Then find the value of sum((alpha)/(beta)+(beta)/(alpha)) is

If alpha and beta are the roots of 4x^(2) + 3x +7 =0 then the value of 1/alpha + 1/beta is

If alpha,beta and gamma are roots of 2x^(3)+x^(2)-7=0 then find the value of sum((alpha)/(beta)+(beta)/(alpha))

If alpha and beta are zeroes of 8x^(2)-6x+1 , then find the value of (1)/(alpha)+(1)/(beta) .

If alpha,beta are the roots of 1+x+x^(2)=0 then the value of alpha^(4)+beta^(4)+alpha^(-4)beta^(-4) =

Match the following If alpha,beta are the roots of the equation x^2-4x+1=0, then Find the value of: 1- alpha^2+beta^2 , 2- alpha^3+beta^3 , 3- |alpha-beta| , 4- 1/alpha+1/beta