Home
Class 12
MATHS
A=[(1,2),(-4,1)] , A^-1=alphaI+betaA the...

`A=[(1,2),(-4,1)] , A^-1=alphaI+betaA` then find the value of `alpha+beta`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation x^(2)-4x+1=0(alpha>beta) then find the value of f(alpha,beta)=(beta^(3))/(2)csc^(2)((1)/(2)tan^(-1)((beta)/(alpha))+(alpha^(3))/(2)sec^(2)((1)/(2)tan^(-1)((alpha)/(beta)))

If alpha and beta are the roots of the equation x^(2)-4x+1=0(alpha

If A=[(1,-alpha),(alpha,beta)] and A A^T=I .Then find the value of alpha and beta

x^(2)-2x-4=0 then find the value of (3 alpha+1),(3 beta+1)

Let x=alpha satisfies the equation log_(1/3)(2*((1)/(2))^(x)-1)=log_(1/3)(((1)/(4))^(x)-4) and the value of 8^(alpha) is beta, then find the value of 27 beta.

tan(alpha+beta)=(1)/(2),tan(alpha-beta)=(1)/(3), then find the value of tan2 alpha

If sin(alpha+beta)=1 and sin(alpha-beta)=(1)/(2), where 0<=,beta<=(pi)/(2) ,then find the values of tan(alpha+2 beta) and tan(2 alpha+beta)

If a function g={(1,1),(2,3),(3,5),(4,7)} is described by g(x)=alpha x+beta, find the values of alpha and beta.

If for the matrix , A = [(1,-alpha),(alpha, beta)], A A^T = I_2 , then the value of alpha^4 + beta^4 is:

If A=[[0,1] , [-1,0]]=(alphaI+betaA)^2 then alpha and beta =