Home
Class 12
MATHS
If lim(xrarr2)(x^2f(2)-4f(x))/(x-2). Giv...

If `lim_(xrarr2)(x^2f(2)-4f(x))/(x-2)`. Given that `f(2)=4 , f'(2)=1`

Text Solution

Verified by Experts

The correct Answer is:
12
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr2)(f(x)-f(2))/(x-2)=

If lim_( xto 2 ) (f(x) -f(2))/( x-2) exist ,then

Let f(2)=4 and f'(2)=4. Then lim_(x rarr2)(xf(2)-2f(x))/(x-2) is equal to

If lim_(x rarr4)(f(x)-5)/(x-2)=1 then lim_(x rarr4)f(x)=

If f(2)=2,f'(2)=1. then lim_(x rarr2)(2x^(2)-4f(x))/(x-2)=(i)-4(ii)-2(iii)2(iv)

Let f: R rarr R be a function such that f(2)=4 and f'(2)=1 . Then, the value of lim_(x rarr 2) (x^(2)f(2)-4f(x))/(x-2) is equal to

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

Evaluate: lim_(x rarr 2)(f(x)-f(2))/(x-2), "where" f(x)=x^(2)-4x