Home
Class 12
MATHS
secy(dy/dx)=sin(x+y)+sin(x-y) if y(0)=0 ...

`secy(dy/dx)=sin(x+y)+sin(x-y)` if `y(0)=0` then find `5y'(pi/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given differential equation \( \sec(y) \frac{dy}{dx} = \sin(x+y) + \sin(x-y) \) with the initial condition \( y(0) = 0 \), we will follow these steps: ### Step 1: Rewrite the equation using trigonometric identities We start by using the identity for the sum of sines: \[ \sin(a) + \sin(b) = 2 \sin\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) \] Let \( a = x+y \) and \( b = x-y \). Then: \[ \sin(x+y) + \sin(x-y) = 2 \sin\left(x\right) \cos\left(y\right) \] Thus, we can rewrite the equation as: \[ \sec(y) \frac{dy}{dx} = 2 \sin(x) \cos(y) \] ### Step 2: Rearranging the equation We can rearrange the equation to isolate \( \frac{dy}{dx} \): \[ \sec(y) \frac{dy}{dx} = 2 \sin(x) \cos(y) \implies \frac{dy}{dx} = 2 \sin(x) \cos(y) \cos(y) = 2 \sin(x) \cos^2(y) \] ### Step 3: Separate variables Now we can separate variables: \[ \frac{dy}{\cos^2(y)} = 2 \sin(x) dx \] ### Step 4: Integrate both sides Integrate both sides: \[ \int \sec^2(y) dy = \int 2 \sin(x) dx \] The integral of \( \sec^2(y) \) is \( \tan(y) \), and the integral of \( 2 \sin(x) \) is \( -2 \cos(x) + C \): \[ \tan(y) = -2 \cos(x) + C \] ### Step 5: Apply the initial condition Using the initial condition \( y(0) = 0 \): \[ \tan(0) = -2 \cos(0) + C \implies 0 = -2(1) + C \implies C = 2 \] So, we have: \[ \tan(y) = -2 \cos(x) + 2 \] ### Step 6: Differentiate to find \( y' \) Now we differentiate \( \tan(y) \): \[ \sec^2(y) \frac{dy}{dx} = 2 \sin(x) \] Thus, \[ \frac{dy}{dx} = \frac{2 \sin(x)}{\sec^2(y)} = 2 \sin(x) \cos^2(y) \] ### Step 7: Evaluate \( y' \) at \( x = \frac{\pi}{2} \) Now we need to find \( y' \) at \( x = \frac{\pi}{2} \): \[ \tan(y) = -2 \cos\left(\frac{\pi}{2}\right) + 2 = 0 + 2 = 2 \] So, \[ y = \tan^{-1}(2) \] Now, substituting \( x = \frac{\pi}{2} \) into \( y' \): \[ y' = \frac{2 \sin\left(\frac{\pi}{2}\right)}{\sec^2(y)} = \frac{2 \cdot 1}{\sec^2(\tan^{-1}(2))} \] Using \( \sec^2(\tan^{-1}(2)) = 1 + \tan^2(\tan^{-1}(2)) = 1 + 4 = 5 \): \[ y' = \frac{2}{5} \] ### Step 8: Find \( 5y' \) Finally, we compute \( 5y' \): \[ 5y' = 5 \cdot \frac{2}{5} = 2 \] Thus, the final answer is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y= y(x), y in [0, (pi)/(2)) is the solution of the differential equation sec y (dy)/(dx)- sin (x+y) - sin (x-y)= 0 , with y(0)= 0, then 5y'((pi)/(2)) is equal to _____

If (dy)/(dx)= y sin 2x, y(0)=1 , then solution is

Suppose cos^(2)y.(dy)/(dx)=sin(x+y)+sin(x-y), |x| le (pi)/(2) and |y|le(pi)/(2). If y((pi)/(3))=-(pi)/(2), then y((pi)/(2)) is

If y=y(x) is the solution of the equation e^(sin y) cos y""(dy)/(dx) +e^(sin y) cos x = cos x,y (0)=0, then 1+y ((pi)/(6)) +( sqrt(3))/(2) y((pi)/(3)) +(1)/( sqrt(2)) y((pi)/(4)) is equal to

If y(x) is a solution of the differential equation ((2+sin x)/(1+y))(dy)/(dx)=-cos x and y(0)=1, then find the value of y((pi)/(2))

Find (dy)/(dx) , if x+y=sin(x-y)

(tany)(dy)/(dx)=sin(x+y)-sin(x-y) A) secy tany = 2 sin x+c B) log(cosy-coty)=2sin x+c C) log(secy+tany)=2sin x+c D) secy+tany=c.e^(sinx)

y(dy)/(dx)sin x=cos x(sin x-(y^(2))/(2)); where at x=(pi)/(2)

(dy) / (dx) = (y) / (x) + sin ((y) / (x))

If y=x^(sin x), then find (dy)/(dx)