Home
Class 12
MATHS
If e^-x int3^x{3t^2+2t+4f'(t)}dt=f(x) an...

If `e^-x int_3^x{3t^2+2t+4f'(t)}dt=f(x) and f'(4)=(alphae^beta-224)/(e^beta-4)^2` then value of `(alpha+beta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equation: \[ e^{-x} \int_3^x (3t^2 + 2t + 4f'(t)) \, dt = f(x) \] ### Step 1: Differentiate both sides with respect to \( x \) Using the Leibniz rule for differentiation under the integral sign, we differentiate the left-hand side: \[ \frac{d}{dx} \left( e^{-x} \int_3^x (3t^2 + 2t + 4f'(t)) \, dt \right) \] Using the product rule, we have: \[ \frac{d}{dx}(e^{-x}) \cdot \int_3^x (3t^2 + 2t + 4f'(t)) \, dt + e^{-x} \cdot (3x^2 + 2x + 4f'(x)) \] This simplifies to: \[ -e^{-x} \int_3^x (3t^2 + 2t + 4f'(t)) \, dt + e^{-x}(3x^2 + 2x + 4f'(x)) \] Setting this equal to \( f'(x) \): \[ f'(x) = -e^{-x} \int_3^x (3t^2 + 2t + 4f'(t)) \, dt + e^{-x}(3x^2 + 2x + 4f'(x)) \] ### Step 2: Evaluate \( f(3) \) To find \( f(3) \), we substitute \( x = 3 \) into the original equation: \[ f(3) = e^{-3} \int_3^3 (3t^2 + 2t + 4f'(t)) \, dt = e^{-3} \cdot 0 = 0 \] ### Step 3: Substitute \( f(3) \) into the equation Now substituting \( f(3) = 0 \) into the equation we derived earlier: \[ x^3 + x^2 + 4f(x) - 36 = e^x f(x) \] Rearranging gives: \[ x^3 + x^2 - 36 = e^x f(x) - 4f(x) \] Factoring out \( f(x) \): \[ f(x) = \frac{x^3 + x^2 - 36}{e^x - 4} \] ### Step 4: Differentiate \( f(x) \) Using the quotient rule to differentiate \( f(x) \): Let \( u = x^3 + x^2 - 36 \) and \( v = e^x - 4 \). \[ f'(x) = \frac{v \cdot u' - u \cdot v'}{v^2} \] Calculating \( u' \) and \( v' \): \[ u' = 3x^2 + 2, \quad v' = e^x \] Thus, \[ f'(x) = \frac{(e^x - 4)(3x^2 + 2) - (x^3 + x^2 - 36)e^x}{(e^x - 4)^2} \] ### Step 5: Evaluate \( f'(4) \) Substituting \( x = 4 \): \[ f'(4) = \frac{(e^4 - 4)(3 \cdot 4^2 + 2) - (4^3 + 4^2 - 36)e^4}{(e^4 - 4)^2} \] Calculating: \[ = \frac{(e^4 - 4)(48 + 2) - (64 + 16 - 36)e^4}{(e^4 - 4)^2} \] \[ = \frac{(e^4 - 4)(50) - 44e^4}{(e^4 - 4)^2} \] \[ = \frac{50e^4 - 200 - 44e^4}{(e^4 - 4)^2} \] \[ = \frac{6e^4 - 200}{(e^4 - 4)^2} \] ### Step 6: Compare with given expression We are given: \[ f'(4) = \frac{\alpha e^\beta - 224}{(e^\beta - 4)^2} \] From our calculation, we have: \[ \frac{6e^4 - 200}{(e^4 - 4)^2} \] Setting \( \alpha = 6 \) and \( \beta = 4 \) gives: \[ \alpha + \beta = 6 + 4 = 10 \] ### Final Answer Thus, the value of \( \alpha + \beta \) is: \[ \boxed{10} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let F:[3,5] rarr R be a twice differentiable function on (3,5) such that F(x)= e^(-x) int_(3)^(x) (3t^(2)+2t+4F'(t)) dt . If F'(4)= (alpha e^(beta)-224)/((e^(beta)-4)^(2)) , then alpha+beta is equal to _____

let f(theta)=(tan theta)/(1+tan theta) and alpha+beta=3(pi)/(4) the value of 2f(alpha)f(beta) is equal to

let f(theta)=(tan theta)/(1+tan theta) and alpha+beta=3(pi)/(4) the value of 2f(alpha)f(beta) is equal to

If alpha and beta are the roots of the equation x^(2)-4x+1=0(alpha>beta) then find the value of f(alpha,beta)=(beta^(3))/(2)csc^(2)((1)/(2)tan^(-1)((beta)/(alpha))+(alpha^(3))/(2)sec^(2)((1)/(2)tan^(-1)((alpha)/(beta)))

If alpha and beta are the roots of the equation x^(2)-4x+1=0(alpha

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1) =5 alpha'(2) =7 then 2nd the vlaue of beta'(1)-10

If for the matrix , A = [(1,-alpha),(alpha, beta)], A A^T = I_2 , then the value of alpha^4 + beta^4 is: