Home
Class 12
MATHS
If veca=hati+hatj+hatk , vecb=2hati+hatj...

If `veca=hati+hatj+hatk , vecb=2hati+hatj-hatk and vecc=4hati+3hatj+hatk` then value of `((veca+vecb)xx(veca -(veca-vecb)xxvecb)))xxvecc` is

A

`30hati-34hatj+36hatk`

B

`30hati+34hatj+36hatk`

C

`30hati+34hatj-36hatk`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow these steps: 1. **Define the vectors**: - \(\vec{a} = \hat{i} + \hat{j} + \hat{k}\) - \(\vec{b} = 2\hat{i} + \hat{j} - \hat{k}\) - \(\vec{c} = 4\hat{i} + 3\hat{j} + \hat{k}\) 2. **Calculate \(\vec{a} + \vec{b}\)**: \[ \vec{a} + \vec{b} = (\hat{i} + \hat{j} + \hat{k}) + (2\hat{i} + \hat{j} - \hat{k}) \] \[ = (1 + 2)\hat{i} + (1 + 1)\hat{j} + (1 - 1)\hat{k} = 3\hat{i} + 2\hat{j} + 0\hat{k} = 3\hat{i} + 2\hat{j} \] 3. **Calculate \(\vec{a} - \vec{b}\)**: \[ \vec{a} - \vec{b} = (\hat{i} + \hat{j} + \hat{k}) - (2\hat{i} + \hat{j} - \hat{k}) \] \[ = (1 - 2)\hat{i} + (1 - 1)\hat{j} + (1 + 1)\hat{k} = -\hat{i} + 0\hat{j} + 2\hat{k} = -\hat{i} + 2\hat{k} \] 4. **Calculate \((\vec{a} - \vec{b}) \times \vec{b}\)**: \[ \vec{u} = \vec{a} - \vec{b} = -\hat{i} + 2\hat{k} \] \[ \vec{u} \times \vec{b} = (-\hat{i} + 2\hat{k}) \times (2\hat{i} + \hat{j} - \hat{k}) \] Using the determinant method: \[ = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{vmatrix} \] \[ = \hat{i}(0 \cdot -1 - 2 \cdot 1) - \hat{j}(-1 \cdot -1 - 2 \cdot 2) + \hat{k}(-1 \cdot 1 - 0 \cdot 2) \] \[ = \hat{i}(0 - 2) - \hat{j}(1 - 4) + \hat{k}(-1) \] \[ = -2\hat{i} + 3\hat{j} - \hat{k} \] 5. **Calculate \((\vec{a} + \vec{b}) \times ((\vec{a} - \vec{b}) \times \vec{b})\)**: \[ \vec{v} = \vec{a} + \vec{b} = 3\hat{i} + 2\hat{j} \] \[ \vec{v} \times (-2\hat{i} + 3\hat{j} - \hat{k}) = (3\hat{i} + 2\hat{j}) \times (-2\hat{i} + 3\hat{j} - \hat{k}) \] Using the determinant method: \[ = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & 0 \\ -2 & 3 & -1 \end{vmatrix} \] \[ = \hat{i}(2 \cdot -1 - 0 \cdot 3) - \hat{j}(3 \cdot -1 - 0 \cdot -2) + \hat{k}(3 \cdot 3 - 2 \cdot -2) \] \[ = -2\hat{i} + 3\hat{j} + (9 + 4)\hat{k} \] \[ = -2\hat{i} + 3\hat{j} + 13\hat{k} \] 6. **Calculate the final cross product with \(\vec{c}\)**: \[ (-2\hat{i} + 3\hat{j} + 13\hat{k}) \times (4\hat{i} + 3\hat{j} + \hat{k}) \] Using the determinant method: \[ = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 3 & 13 \\ 4 & 3 & 1 \end{vmatrix} \] \[ = \hat{i}(3 \cdot 1 - 13 \cdot 3) - \hat{j}(-2 \cdot 1 - 13 \cdot 4) + \hat{k}(-2 \cdot 3 - 3 \cdot 4) \] \[ = \hat{i}(3 - 39) - \hat{j}(-2 - 52) + \hat{k}(-6 - 12) \] \[ = -36\hat{i} + 54\hat{j} - 18\hat{k} \] 7. **Final Result**: The final value is: \[ -36\hat{i} + 54\hat{j} - 18\hat{k} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca=2hati+2hatj-hatk, vecb=3hati-hatj-hatk and vecc=hati+2hatj-3hatk then verify that vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc .

If veca=hati+hatj+hatk, vecb=hati-hatj+hatk, vec c=hati+2hatj-hatk , then the value of |(veca*veca,veca*vecb, veca*vecc),(vecb*veca, vecb *vecb,vecb*vecc),(vec c*veca, vec c*vec b,vec c*vec c)| is equal to :

If veca=hati+hatj+hatk, vecb=2hati-hatj and vecc=3hatj+hatk then verify the following: (veca+vecb).(veca-vecb)=a^2-b^2 .

If vecaa=hati+2hatj+3hatk, vecb=2hati-hatj+hatk and vecc=hati+hatj-2hatk, verify that vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc.

If veca = 2hati -3hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If vecA=9hati-7hatj+5hatk and vecB=3hati-2hatj-6hatk then the value of (vecA+vecB).(vecA-vecB) is