Home
Class 12
MATHS
Without expanding the determinant, prove...

Without expanding the determinant, prove that `|[a,a^2,bc],[b,b^2,ca],[c,c^2,ab]| = |[1,a^2,a^3],[1,b^2,b^3],[1,c^2,c^3]|`

Text Solution

Verified by Experts

The correct Answer is:
R.H.S.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OMEGA PUBLICATION|Exercise Multiple Choice Questions (MCQs)|20 Videos
  • DETERMINANTS

    OMEGA PUBLICATION|Exercise Multiple Choice Questions (MCQs)|20 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OMEGA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS |11 Videos
  • DIFFERENTIAL EQUATIONS

    OMEGA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (MCQs) |44 Videos

Similar Questions

Explore conceptually related problems

Prove that |[1,a,a^2-bc],[1,b,b^2-ca],[1,c,c^2-ab]|= 0

Prove that: |[-a^2, ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

Using the properties of determinant, show that : |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]| = 1+a^2+b^2+c^2

Prove that: |[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|=4a^2b^2c^2

Prove that: |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]|=|[a^2+1,b^2,c^2],[a^2,b^2+1,c^2],[a^2,b^2,c^2+1]|=1+a^2+b^2+c^2

Prove that: |[a+b+2c,a,b],[c,b+c+2a,b],[c,a,c+a+2b]|= 2(a+b+c)^3

By using properties of determinants, show that : |[1,a,a^2],[1,b,b^2],[1,c,c^2]| = (a-b)(b-c)(c-a)

Using properties of determinants, prove that: |[3a,-a+b,-a+c],[-b+a,3b,-b+c],[-c+a,-c+b,3c]| = 3(a+b+c)(ab+bc+ca)

Without expanding show that following : |[a,a+b,a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b,10a+6b+3c]| = a^3