Home
Class 12
MATHS
Derivative of sin ^(-1) ( 2x sqrt ( 1 - ...

Derivative of `sin ^(-1) ( 2x sqrt ( 1 - x ^(2))) , - (1)/( sqrt2) lt x lt (1)/( sqrt2)` w.r.t.x is .......

Text Solution

Verified by Experts

The correct Answer is:
`(-2)/(sqrt(1 - x^2))`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OMEGA PUBLICATION|Exercise IMPORTANT QUESTIONS FROM MISCELLANEOUS EXERCISE|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OMEGA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS |11 Videos
  • APPLICATION OF INTEGRALS

    OMEGA PUBLICATION|Exercise Multiple Choice Questions|16 Videos
  • DETERMINANTS

    OMEGA PUBLICATION|Exercise Multiple Choice Questions (MCQs)|20 Videos

Similar Questions

Explore conceptually related problems

Prove that : 2 sin^-1 x = sin^-1 (2x sqrt(1-x^2)), |x| le (1/(sqrt2)

Diferentiate tan^(-1)((x)/(sqrt(1 - x^2))) w.r.t.x.

Find dy/dx in the following: y=sin^-1(2x sqrt(1-x^2)) , -1/sqrt2ltxlt1/sqrt2

Differentiate (x cos^(-1) x)/(sqrt(1 - x^2)) w.r.t.x.

Differentiate cos^(-1)((1)/(sqrt(1 + x^2))) w.r.t.x.

Find (dy)/(dx) , if y = tan^(-1) ((3x - x^3)/(1 - 3x^2)) , (-1)/(sqrt3) lt x lt 1/(sqrt(3))