Home
Class 12
MATHS
If y = sec^-1(1/(2x^2-1)), then find dy/...

If `y = sec^-1(1/(2x^2-1))`, then find `dy/dx`, given `0 < x < 1/sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
`(-2)/(sqrt(1 - x^2))`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OMEGA PUBLICATION|Exercise IMPORTANT QUESTIONS FROM MISCELLANEOUS EXERCISE|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OMEGA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS |11 Videos
  • APPLICATION OF INTEGRALS

    OMEGA PUBLICATION|Exercise Multiple Choice Questions|16 Videos
  • DETERMINANTS

    OMEGA PUBLICATION|Exercise Multiple Choice Questions (MCQs)|20 Videos

Similar Questions

Explore conceptually related problems

If y=sec^-1(1/(4x^3 -3x)), find dy/dx

If y=(x)/(x^(2)+1) , then find (dy)/(dx)

If y=m^(2)sec^(-1)x, then find (dy)/(dx) .

If y = sin^-1((2x)/(1+x^2)) and -1 < x < 1, find dy/dx

If y = sec(tan^-1x) , then dy/dx at x =1 is equal to

If y=(1+x)(1+x^2)(1+x^4)(1+x^(2n)), then find (dy)/(dx)a tx=0.

If y = tan^-1 (2x/(1-x^2)) + cos^-1 ((1-x^2)/(1+x^2)), find dy/dx when x in (0,1)

If y=sec^(-1)(sqrt(1+x^(2))) , when -1 lt x lt 1, then find (dy)/(dx)