Home
Class 12
MATHS
Differentiate tan^(-1) ((sqrt(1 + x^2) -...

Differentiate `tan^(-1) ((sqrt(1 + x^2) - 1)/(x))` w.r.t.x .

Text Solution

Verified by Experts

The correct Answer is:
`1/(2(1 + x^2))`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OMEGA PUBLICATION|Exercise IMPORTANT QUESTIONS FROM MISCELLANEOUS EXERCISE|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OMEGA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS |11 Videos
  • APPLICATION OF INTEGRALS

    OMEGA PUBLICATION|Exercise Multiple Choice Questions|16 Videos
  • DETERMINANTS

    OMEGA PUBLICATION|Exercise Multiple Choice Questions (MCQs)|20 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((sqrt(1 + a^2 x^2) - 1)/(ax)) w.r.t.x.

Differentiate tan^(-1) ((sqrt(1 + x^2) - 1)/(x)) w.r.t. sin^(-1) ((2x)/(1 + x^2)) .

Differentiate cot^(-1)((sqrt(1 + x^2) - 1)/(x)) w.r.t.x.

Differentiate tan^(-1)((sqrt(1 - x^2))/(x)) w.r.t. cos^(-1)(2x sqrt(1 - x^2))

Differentiate tan^-1 (sqrt(1 + x^2) - x) w.r.t. x.

Differentiate tan^-1((sqrt(1+x^2)-1)/x) w.r.t tan^-1(x/sqrt(1-x^2))