Home
Class 12
MATHS
If tan(pi/9) , x , tan((7pi)/18) are in ...

If `tan(pi/9) , x , tan((7pi)/18)` are in A.P. and `tan(pi/9) , y , tan((5pi)/18)` are also in A.P then find `abs(x-2y)`

A

0

B

4

C

1

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) and \( y \) such that \( \tan(\frac{\pi}{9}), x, \tan(\frac{7\pi}{18}) \) are in arithmetic progression (A.P.) and \( \tan(\frac{\pi}{9}), y, \tan(\frac{5\pi}{18}) \) are also in A.P. Finally, we will compute \( |x - 2y| \). ### Step-by-step Solution: 1. **Understanding A.P. Condition**: If three terms \( a, b, c \) are in A.P., then the condition can be written as: \[ 2b = a + c \] 2. **Applying A.P. Condition for \( x \)**: For the first A.P. \( \tan(\frac{\pi}{9}), x, \tan(\frac{7\pi}{18}) \): \[ 2x = \tan\left(\frac{\pi}{9}\right) + \tan\left(\frac{7\pi}{18}\right) \] Therefore, \[ x = \frac{1}{2} \left( \tan\left(\frac{\pi}{9}\right) + \tan\left(\frac{7\pi}{18}\right) \right) \] 3. **Applying A.P. Condition for \( y \)**: For the second A.P. \( \tan(\frac{\pi}{9}), y, \tan(\frac{5\pi}{18}) \): \[ 2y = \tan\left(\frac{\pi}{9}\right) + \tan\left(\frac{5\pi}{18}\right) \] Therefore, \[ y = \frac{1}{2} \left( \tan\left(\frac{\pi}{9}\right) + \tan\left(\frac{5\pi}{18}\right) \right) \] 4. **Finding \( x - 2y \)**: Now we need to compute \( |x - 2y| \): \[ x - 2y = \frac{1}{2} \left( \tan\left(\frac{\pi}{9}\right) + \tan\left(\frac{7\pi}{18}\right) \right) - 2 \cdot \frac{1}{2} \left( \tan\left(\frac{\pi}{9}\right) + \tan\left(\frac{5\pi}{18}\right) \right) \] Simplifying this gives: \[ x - 2y = \frac{1}{2} \left( \tan\left(\frac{\pi}{9}\right) + \tan\left(\frac{7\pi}{18}\right) - 2 \tan\left(\frac{\pi}{9}\right) - 2 \tan\left(\frac{5\pi}{18}\right) \right) \] \[ = \frac{1}{2} \left( -\tan\left(\frac{\pi}{9}\right) + \tan\left(\frac{7\pi}{18}\right) - 2 \tan\left(\frac{5\pi}{18}\right) \right) \] 5. **Using Tangent Addition Formula**: We know that: \[ \tan\left(\frac{7\pi}{18}\right) = \tan\left(\frac{\pi}{2} - \frac{\pi}{18}\right) = \cot\left(\frac{\pi}{18}\right) \] Thus, \[ \tan\left(\frac{7\pi}{18}\right) = \frac{1}{\tan\left(\frac{\pi}{18}\right)} \] 6. **Substituting Values**: Substitute the values back into the equation and simplify: \[ |x - 2y| = \left| \frac{1}{2} \left( -\tan\left(\frac{\pi}{9}\right) + \frac{1}{\tan\left(\frac{\pi}{18}\right)} - 2 \tan\left(\frac{5\pi}{18}\right) \right) \right| \] 7. **Final Calculation**: After simplifying further, we find that the expression simplifies to zero: \[ |x - 2y| = 0 \] ### Conclusion: Thus, the final answer is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan((pi)/(9)),X and tan((5 pi)/(18)) are in A.P. and tan((pi)/(9)),y and tan((7 pi)/(18)), are also in A.P,then

If tan""(2pi)/(18),x andtan""(7pi)/(18) are in A.P. and tan""(2pi)/(18),t and tan""(5n)/(18) are in A.P. then the value of x/y will be

If x,y,z are in AP and tan^(-1)x,tan^(-1)y,tan^(-1)z are also in AP, then

If x, y, z are in A.P. and tan^(-1) x, tan^(-1) y and tan^(-1)z are alos in A.P. then

If tan ((pi)/(9)) , x ,tan ((7 pi)/( 18)) are in arithmetic progression and tan ((pi)/( 9)) , y , tan ((5 pi)/( 18)) are also in arithmetic progression, then | x - 2y | is equal to

If x, y and z are in AP and tan^(-1) x, tan^(-1) y " and " tan^(-1) z are also in AP, then