Home
Class 12
MATHS
A=[(1,1,1),(0,1,1),(0,0,1)] , then sum o...

`A=[(1,1,1),(0,1,1),(0,0,1)]` , then sum of all elements in `A+A^2+A^3+ . . . + A^(26)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of all elements in the series \( A + A^2 + A^3 + \ldots + A^{26} \), where the matrix \( A \) is given as: \[ A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \] Calculating the elements of \( A^2 \): - First row: - \( (1 \cdot 1 + 1 \cdot 0 + 1 \cdot 0) = 1 \) - \( (1 \cdot 1 + 1 \cdot 1 + 1 \cdot 0) = 2 \) - \( (1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1) = 3 \) - Second row: - \( (0 \cdot 1 + 1 \cdot 0 + 1 \cdot 0) = 0 \) - \( (0 \cdot 1 + 1 \cdot 1 + 1 \cdot 0) = 1 \) - \( (0 \cdot 1 + 1 \cdot 1 + 1 \cdot 1) = 2 \) - Third row: - \( (0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0) = 0 \) - \( (0 \cdot 1 + 0 \cdot 1 + 1 \cdot 0) = 0 \) - \( (0 \cdot 1 + 0 \cdot 1 + 1 \cdot 1) = 1 \) Thus, \[ A^2 = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Next, we calculate \( A^3 \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \] Calculating the elements of \( A^3 \): - First row: - \( (1 \cdot 1 + 2 \cdot 0 + 3 \cdot 0) = 1 \) - \( (1 \cdot 1 + 2 \cdot 1 + 3 \cdot 0) = 3 \) - \( (1 \cdot 1 + 2 \cdot 1 + 3 \cdot 1) = 6 \) - Second row: - \( (0 \cdot 1 + 1 \cdot 0 + 2 \cdot 0) = 0 \) - \( (0 \cdot 1 + 1 \cdot 1 + 2 \cdot 0) = 1 \) - \( (0 \cdot 1 + 1 \cdot 1 + 2 \cdot 1) = 3 \) - Third row: - \( (0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0) = 0 \) - \( (0 \cdot 1 + 0 \cdot 1 + 1 \cdot 0) = 0 \) - \( (0 \cdot 1 + 0 \cdot 1 + 1 \cdot 1) = 1 \) Thus, \[ A^3 = \begin{pmatrix} 1 & 3 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 3: Identify the Pattern From the calculations, we can observe a pattern in the matrices: \[ A^n = \begin{pmatrix} 1 & n & \frac{n(n+1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 4: Calculate \( A^{26} \) Using the pattern, we can write: \[ A^{26} = \begin{pmatrix} 1 & 26 & \frac{26 \cdot 27}{2} \\ 0 & 1 & 26 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 26 & 351 \\ 0 & 1 & 26 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 5: Sum of All Elements Now, we need to find the sum of all elements in \( A + A^2 + A^3 + \ldots + A^{26} \). The sum of elements in \( A^n \) can be calculated as follows: - The sum of elements in \( A^n \) is \( 1 + n + \frac{n(n+1)}{2} + 0 + 1 + n + 0 + 0 + 1 = 3 + 2n + \frac{n(n+1)}{2} \). Thus, the total sum can be computed as: \[ \text{Total Sum} = \sum_{n=1}^{26} \left( 3 + 2n + \frac{n(n+1)}{2} \right) \] Calculating each part: 1. **Sum of constants**: \( 3 \times 26 = 78 \) 2. **Sum of \( 2n \)**: \( 2 \times \frac{26 \cdot 27}{2} = 26 \cdot 27 = 702 \) 3. **Sum of \( \frac{n(n+1)}{2} \)**: - \( \sum_{n=1}^{26} \frac{n(n+1)}{2} = \frac{1}{2} \sum_{n=1}^{26} n^2 + \frac{1}{2} \sum_{n=1}^{26} n \) - \( = \frac{1}{2} \cdot \frac{26 \cdot 27 \cdot 53}{6} + \frac{1}{2} \cdot \frac{26 \cdot 27}{2} = 6201 + 351 = 6552 \) Adding these sums together: \[ \text{Total Sum} = 78 + 702 + 6552 = 6332 \] ### Final Answer Thus, the sum of all elements in \( A + A^2 + A^3 + \ldots + A^{26} \) is: \[ \boxed{4056} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If A^(-1)=[(1,-1,2),(0,3,1),(0,0,-1//3)] , then

If A = [(1,1,1),(0,1,1),(0,0,1)] and M = A + A^(2) + A^(3) + . . . . + A^(20) then the sum of all the elements of the matrix M is equal to _____

If A=[(0,1,2),(1,2,3),(3,1,1)] , then the sum of the all the diagonal entries of A^(-1) is

If A=|[1,0,1],[0,1,2],[0,0,4]| then |3A|

If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

If A = [ (0,1,1),(1,0,1),(1,1,0)] then A^(2) - 3I =

If A is a square matrix of order 2 such that A[(,1),(,-1)]=[(,-1),(,2)] and A^(2)[(,1),(,-1)]=[(,1),(,0)] the sum of elements and product of elements of A are S and P, S + P is

If [2-1 1 0-3 4]A=[-1-8-10 1-2-5 9 22 15] , then sum of all the elements of matrix A is 0 b. 1 c. 2 d. -3

If A=[(3,-1),(2,0)] and B=[(2,-5),(3,1)] then sum of diagonal elements of (A+B) is