Home
Class 12
MATHS
e^(4x)-e^(3x)-4e^(2x)-e^(x)+1=0 then the...

`e^(4x)-e^(3x)-4e^(2x)-e^(x)+1=0` then the number of solution of equation is

Promotional Banner

Similar Questions

Explore conceptually related problems

e^(4x)+2e^(3x)-e^x-6=0 find the number of solutions

The number of solution of the equation x^(4)-1=e^(x) is/are

Number of solutions of e log_(e)x=x is

Number of solutions of the equation 4x^(2)e^(-x)-1=0

Find the number of solution of the equation e^(sin x)-e^(-sin x)-4=0

int (e^(x)dx)/(e^(2x)+4e^(x)+3)

int(e^(4x)-1)/(e^(2x))dx

x_(1) and x_(2) are two solutions of the equation e^(x) cos x=1 , The minimum number of the solution of the equation e^(x) sin x =1 , lying between x_(1) and x_(2) can be

The number of solution of the equation e^(|x|)+|x|+e^(|x|)=4

Consider the biquadratic equation E:x^(4)-5x^(3)+(lambda+2)x^(2)-5x+1=0 then value of lambda so that equation E has two real solutions