Home
Class 12
MATHS
If (x+x^3)dy=(y+yx^2+x^3)dx and y(1)=0 t...

If `(x+x^3)dy=(y+yx^2+x^3)dx and y(1)=0` then `y(2)` is

A

`ln(17/2)`

B

0

C

`ln(5/2)`

D

`ln(2/5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation given by \((x + x^3) dy = (y + yx^2 + x^3) dx\) with the initial condition \(y(1) = 0\), we will follow these steps: ### Step 1: Rewrite the Differential Equation We start by rewriting the equation in the standard form: \[ \frac{dy}{dx} = \frac{y + yx^2 + x^3}{x + x^3} \] ### Step 2: Simplify the Right-Hand Side We can simplify the right-hand side: \[ \frac{dy}{dx} = \frac{y(1 + x^2) + x^3}{x(1 + x^2)} \] This can be separated into two parts: \[ \frac{dy}{dx} = \frac{y(1 + x^2)}{x(1 + x^2)} + \frac{x^3}{x(1 + x^2)} \] This simplifies to: \[ \frac{dy}{dx} = \frac{y}{x} + \frac{x^2}{1 + x^2} \] ### Step 3: Rearranging the Equation Rearranging gives us: \[ \frac{dy}{dx} - \frac{y}{x} = \frac{x^2}{1 + x^2} \] ### Step 4: Identify \(p\) and \(q\) From the standard form \( \frac{dy}{dx} + p y = q \), we identify: - \(p = -\frac{1}{x}\) - \(q = \frac{x^2}{1 + x^2}\) ### Step 5: Find the Integrating Factor The integrating factor \(I\) is given by: \[ I = e^{\int p \, dx} = e^{\int -\frac{1}{x} \, dx} = e^{-\ln |x|} = \frac{1}{x} \] ### Step 6: Multiply the Equation by the Integrating Factor Multiplying the entire equation by the integrating factor: \[ \frac{1}{x} \frac{dy}{dx} - \frac{y}{x^2} = \frac{x^2}{x(1 + x^2)} = \frac{x}{1 + x^2} \] ### Step 7: Rewrite the Left-Hand Side The left-hand side can be rewritten as: \[ \frac{d}{dx} \left( \frac{y}{x} \right) = \frac{x}{1 + x^2} \] ### Step 8: Integrate Both Sides Integrating both sides gives: \[ \frac{y}{x} = \int \frac{x}{1 + x^2} \, dx + C \] Using the substitution \(u = 1 + x^2\), we find: \[ \int \frac{x}{1 + x^2} \, dx = \frac{1}{2} \ln |1 + x^2| + C \] Thus, \[ \frac{y}{x} = \frac{1}{2} \ln(1 + x^2) + C \] ### Step 9: Solve for \(y\) Multiplying through by \(x\): \[ y = \frac{x}{2} \ln(1 + x^2) + Cx \] ### Step 10: Apply the Initial Condition Using the initial condition \(y(1) = 0\): \[ 0 = \frac{1}{2} \ln(2) + C \cdot 1 \] Thus, \[ C = -\frac{1}{2} \ln(2) \] ### Step 11: Substitute \(C\) Back into the Equation Substituting \(C\) back, we have: \[ y = \frac{x}{2} \ln(1 + x^2) - \frac{1}{2} \ln(2) \cdot x \] ### Step 12: Find \(y(2)\) Now, substituting \(x = 2\): \[ y(2) = \frac{2}{2} \ln(1 + 2^2) - \frac{1}{2} \ln(2) \cdot 2 \] This simplifies to: \[ y(2) = \ln(5) - \ln(2) = \ln\left(\frac{5}{2}\right) \] ### Final Answer Thus, the value of \(y(2)\) is: \[ \boxed{\ln\left(\frac{5}{2}\right)} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If for x ge 0, y = (x) is the solution of the differential equation, (x+1)dy=((x+1)^&2+y-3)dx,y(2)=0 , then y(3) is equal to ….

If (2+sin x)(dy)/(dx)+(y+1)cos x=0 and y(0)=1, then y((pi)/(2)) is equal to -(1)/(3)(2)(4)/(3) (3) (1)/(3)(4)-(2)/(3)

If x^(3) dy + xy dx = x^(2) dy + 2y dx , y (2) = e and x gt 1 , then y(4) is equal to .

If y^(3) - 3y^(2) x=x^(3) +3x^(2) y,then (dy)/(dx)=

y^(3)dx+x^(2)dy=0

if ( dy )/(dx) =1 + x +y +xy and y ( -1) =0 , then the value of ( y (0) +3 - e^(1//2))

If x dy =y (dx+y dy), y(1) =1 and Y(x)gt 0 . Then, y (-3) is epual to (a) 3 (b) 2 (c) 1 (d) 0

(1+x)(dy)/(dx)=((1+x)^2+(y-3)) , If y(2)=0 then y(3)=?

Solve x(1-x^2)dy+(2x^2y-y-5x^3)dx=0

The curve satisfying the differential equation (dx)/(dy) = (x + 2yx^2)/(y-2x^3) and passing through (1, 0) is given by