Home
Class 14
MATHS
Arithmetic mean of 10 observations is 60...

Arithmetic mean of 10 observations is 60 and sum of squares of deviations from 50 is 5000, what is the standard deviation of the observation

A

20

B

21

C

22.36

D

24.7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to determine the standard deviation of the observations based on the given information. ### Step 1: Understand the Given Information - The arithmetic mean (average) of 10 observations is 60. - The sum of squares of deviations from 50 is 5000. ### Step 2: Calculate the Total Sum of Observations The arithmetic mean (μ) is given by the formula: \[ \text{Mean} = \frac{\text{Sum of Observations}}{N} \] Where \(N\) is the number of observations. Rearranging gives us: \[ \text{Sum of Observations} = \text{Mean} \times N \] Substituting the values: \[ \text{Sum of Observations} = 60 \times 10 = 600 \] ### Step 3: Use the Sum of Squares of Deviations We know that the sum of squares of deviations from a point (in this case, 50) is given as 5000. This can be expressed as: \[ \sum (x_i - 50)^2 = 5000 \] ### Step 4: Expand the Sum of Squares Using the formula for the sum of squares of deviations: \[ \sum (x_i - 50)^2 = \sum (x_i^2 - 100x_i + 2500) \] This can be rewritten as: \[ \sum x_i^2 - 100 \sum x_i + 2500N = 5000 \] Substituting \(\sum x_i = 600\) and \(N = 10\): \[ \sum x_i^2 - 100 \times 600 + 2500 \times 10 = 5000 \] \[ \sum x_i^2 - 60000 + 25000 = 5000 \] \[ \sum x_i^2 - 35000 = 5000 \] \[ \sum x_i^2 = 40000 \] ### Step 5: Calculate the Variance The variance (\(σ^2\)) is calculated using the formula: \[ \sigma^2 = \frac{1}{N} \sum (x_i - \mu)^2 \] Where \(\mu\) is the mean. We can express this as: \[ \sigma^2 = \frac{1}{N} \left( \sum x_i^2 - 2\mu \sum x_i + N\mu^2 \right) \] Substituting the known values: \[ \sigma^2 = \frac{1}{10} \left( 40000 - 2 \times 60 \times 600 + 10 \times 60^2 \right) \] Calculating each term: - \(2 \times 60 \times 600 = 72000\) - \(10 \times 60^2 = 36000\) Now substituting these values back: \[ \sigma^2 = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) \] \[ \sigma^2 = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) = \frac{1}{10} \left( 40000 - 72000 + 36000 \right) \] ### Step 6: Calculate the Standard Deviation The standard deviation (\(σ\)) is the square root of the variance: \[ \sigma = \sqrt{\sigma^2} \] Substituting the variance we calculated: \[ \sigma = \sqrt{2500} = 50 \] ### Final Answer The standard deviation of the observations is **50**.
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    PUNEET DOGRA|Exercise PRE YEAR QUESTIONS |163 Videos
  • SET & RELATION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|65 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

If the mean of 10 observation is 50 and the sum of the square of the deviations of observation from the mean is 250, then the coefficient of variation of these observation is

If the sum of the deviations of 50 observations from 30 is 50, then the mean of these observations is

If the mean of 100 observations is 50 and their standard deviations is 5,than the sum of all squares of all the observations is

If standard deviation of a set of observation is 4 and if each of the observations is divided by 4, then the standard deviation of new set of observations is

The mean of four observations is 3. If the sum of the squares of these observations is 48 then their standard deviation is (1)sqrt(2)(2)sqrt(3)(3)sqrt(5)(4)sqrt(7)

The sum of deviations of n observations about 25 is 25 and sum of deviations of the same n observations about 35 is -25. Find the mean of the observations.

The mean square deviation of a set of observation x_(1), x_(2)……x_(n) about a point m is defined as (1)/(n)Sigma_(i=1)^(n)(x_(i)-m)^(2) . If the mean square deviation about -1 and 1 of a set of observation are 7 and 3 respectively. The standard deviation of those observations is

The variance of 10 observations is 16 and their mean is 12. If each observation is multiplied by 4, what is new standard deviation-

PUNEET DOGRA-STATISTICS-PRE YEAR QUESTIONS
  1. The median of the observations 10, 11, 13, 17, x + 2, x + 4, 31, 33, 3...

    Text Solution

    |

  2. Arithmetic mean of 10 observations is 60 and sum of squares of deviati...

    Text Solution

    |

  3. Simplify:- (13 * 7 - 5)//4 = ?//2

    Text Solution

    |

  4. The class marks in a frequency table are given to be 5, 10, 15, 20, 25...

    Text Solution

    |

  5. The mean of 5 observations is 44 and variance is 8.24.If three of the ...

    Text Solution

    |

  6. Consider the following discrete frequency distribution what is the val...

    Text Solution

    |

  7. Mean of 100 observations is 50 and standard deviation is 10, if 5 is a...

    Text Solution

    |

  8. If the range of a set of observations on a variable X is known to be 2...

    Text Solution

    |

  9. If V is the variance and M is the mean of first 15 natural numbers, th...

    Text Solution

    |

  10. A car travels first 60km at a speed of 3v km/hr and travels next om at...

    Text Solution

    |

  11. The mean weight of 150 students in a certain class is 60kg. The mean w...

    Text Solution

    |

  12. If two variables X and Y are independent, then what is correlation coe...

    Text Solution

    |

  13. the mean of 100 observations is 50 and the standard deviation is 10. I...

    Text Solution

    |

  14. Consider the following statements: 1.The algebraic sum of deviations ...

    Text Solution

    |

  15. Let the correlation coefficient between X and Y be 0.6, random variabl...

    Text Solution

    |

  16. If all the natural numbers between 1 and 20 are multiplied by 3, then ...

    Text Solution

    |

  17. In any discrete series (when all values are not sume) if x represents ...

    Text Solution

    |

  18. Which one of the following can be obtained from a histogram ?

    Text Solution

    |

  19. if x(1) gt 0,y(1) gt 0 (1,2 3…. n) are the values of two variable X ...

    Text Solution

    |

  20. The variance of 25 observations is 4. If 2 is added to each observatio...

    Text Solution

    |