Home
Class 14
MATHS
A stone thrown vertically upward satisfi...

A stone thrown vertically upward satisfies the equation `s = 64t - 64t^(2)` where s is in meter and t is in second What is the lime required to reach the maximum height?

A

1s

B

2s

C

3s

D

4s

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |85 Videos
  • 3-D GEOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|108 Videos
  • AREA BOUNDED BY CURVES

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|39 Videos

Similar Questions

Explore conceptually related problems

A stone thrown vertically upward satisfies the equation s= 64 t -16t^(2) where is in meter and t is second .What is the time required to reach the maximum height ?

A stone thrown vertically upwards satisfies the equations s = 80t –16t^(2) . The time required to reach the maximum height is

The maximum height is reached is 5s by a stone thrown vertically upwards and moving under the equation 10s=10ut-49t^(2) , where s is in metre and t is in second. The value of u is

A stone thrown upwards from ground level, has its equation of height h=490t-4.9t^(2) where 'h' is in metres and t is in seconds respectively. What is the maximum height reached by it ?

A car is moving in such a ways that the distance it covers , is given by the equations s = 4t^(2) +3t, where s, is in meters and t is in seconds . What would be the velocity and the accelerations of the car at time t=20 seconds?

A stone thrown vertically upwards rises S ft in t seconds where S =112t-16t ^(2) . The maximum height reached by the stone is

The height reached in time t by a particle thrown upward with a speed u is given by h=ut-(1)/(2) "gt"^(2) where g is acceleration due to gravity. Find the time taken in reaching the maximum height.

The equation of a wave is 10sin(6.28x-314t) where x is in centimeters and t is in seconds.The maximum velocity of the particle is (in m/s)?

The height (in meters) at any time t (in seconds) of a ball thrown vertically varies according to equation h(t)=-16t^(2)+256t . How long after in seconds the ball reaches the hightest point

A particle is moving along the x-axis such that s=6t-t^(2) , where s in meters and t is in second. Find the displacement and distance traveled by the particle during time interval t=0 to t=5 s .

PUNEET DOGRA-APPLICATION OF DERIVATIVES-PREV YEAR QUESTIONS
  1. A stone thrown vertically upward satisfies the equation s = 64t - 64t^...

    Text Solution

    |

  2. For x gt 0, what is the minimum value of x+(x+2)/(2x)?

    Text Solution

    |

  3. A curve y = me^(mx) where m gt 0 intersects y-axis ai a point P, W...

    Text Solution

    |

  4. A curve y = me^(mx) where m gt 0 intersects y-axis ai a point P, H...

    Text Solution

    |

  5. Find the equation of tangent of the curve 6y=9-3x^(2) at point (1,1).

    Text Solution

    |

  6. If x^(2)-6x-27gt0, then which one of the following is correct ?

    Text Solution

    |

  7. In which one of the following intervals is lite function f(x) = x^(2) ...

    Text Solution

    |

  8. In which one of the following intervals is lite function f(x) = x^(2) ...

    Text Solution

    |

  9. What is the minimum value of a^(2)x + b^(2)y, if xy = c^(2)

    Text Solution

    |

  10. If x^(2)+y^(2)=r^(2), then x is equal to

    Text Solution

    |

  11. A solid cylinder has total surface area of 462 sq. cm. Its curved surf...

    Text Solution

    |

  12. What is the minimum value off |x(x-1)+1|^(1//3), where 0 le x le 1?

    Text Solution

    |

  13. A flower in the form of a sector has been fenced by a wire of 40 m len...

    Text Solution

    |

  14. In the interval (-1, 1), the function f(x) = x^(2) - x + 4 is :

    Text Solution

    |

  15. The function f(x) = sin x + cos x will be

    Text Solution

    |

  16. If sin theta - cos theta = 0 then find the value of cot theta

    Text Solution

    |

  17. What is the maximum value of 16 sin theta -12 sin^(2)theta ?

    Text Solution

    |

  18. Three sides of a trapezium are each equal to 6 cm. Let a in (0,pi/2)...

    Text Solution

    |

  19. Three sides of a trapezium are each equal to 6 cm. Let a in (0,pi/2)...

    Text Solution

    |

  20. The length of the parallel sides of a trapezium are 51 cm and 21 cm , ...

    Text Solution

    |

  21. Which one of the following is the second degree polynomial function f(...

    Text Solution

    |