Home
Class 6
MATHS
What is the decimal equivalent of (1)/(1...

What is the decimal equivalent of `(1)/(10) +(11)/(100) +(111)/(1000) ?`

A

1.111

B

0.111

C

0.321

D

0.1111

Text Solution

AI Generated Solution

The correct Answer is:
To find the decimal equivalent of the expression \( \frac{1}{10} + \frac{11}{100} + \frac{111}{1000} \), we can convert each fraction to its decimal form and then add them together. ### Step 1: Convert each fraction to decimal. 1. **Convert \( \frac{1}{10} \)**: \[ \frac{1}{10} = 0.1 \] 2. **Convert \( \frac{11}{100} \)**: \[ \frac{11}{100} = 0.11 \] 3. **Convert \( \frac{111}{1000} \)**: \[ \frac{111}{1000} = 0.111 \] ### Step 2: Add the decimal values together. Now we add the decimal values we found: \[ 0.1 + 0.11 + 0.111 \] To add these, we can align them by their decimal points: ``` 0.100 + 0.110 + 0.111 -------- ``` ### Step 3: Perform the addition. Starting from the rightmost column: - In the thousandths place: \( 0 + 0 + 1 = 1 \) - In the hundredths place: \( 0 + 1 + 1 = 2 \) - In the tenths place: \( 1 + 1 + 1 = 3 \) So, we have: ``` 0.100 + 0.110 + 0.111 -------- 0.321 ``` ### Final Answer: The decimal equivalent of \( \frac{1}{10} + \frac{11}{100} + \frac{111}{1000} \) is \( 0.321 \). ---
Promotional Banner