Home
Class 6
MATHS
The decimal equivalent to (1)/(10) + (11...

The decimal equivalent to `(1)/(10) + (11)/(100) + (111)/(1000)` is :

A

11.11

B

0.123

C

0.321

D

0.1111

Text Solution

AI Generated Solution

The correct Answer is:
To find the decimal equivalent of the expression \((1)/(10) + (11)/(100) + (111)/(1000)\), we can follow these steps: ### Step 1: Convert each fraction to its decimal form 1. **Convert \((1)/(10)\)**: \[ \frac{1}{10} = 0.1 \] 2. **Convert \((11)/(100)\)**: \[ \frac{11}{100} = 0.11 \] 3. **Convert \((111)/(1000)\)**: \[ \frac{111}{1000} = 0.111 \] ### Step 2: Add the decimal values together Now, we will add the decimal values we found: \[ 0.1 + 0.11 + 0.111 \] To add these, we can align them by their decimal points: ``` 0.111 + 0.110 + 0.100 --------- ``` ### Step 3: Perform the addition Starting from the rightmost column: - In the thousandths place: \(1 + 0 + 0 = 1\) - In the hundredths place: \(1 + 1 + 0 = 2\) - In the tenths place: \(0 + 1 + 1 = 2\) So, we have: \[ 0.111 + 0.110 + 0.100 = 0.321 \] ### Final Answer The decimal equivalent of \((1)/(10) + (11)/(100) + (111)/(1000)\) is: \[ \boxed{0.321} \] ---
Promotional Banner