Home
Class 11
MATHS
Geometric Series #!#Sum Formulae...

Geometric Series #!#Sum Formulae

Promotional Banner

Similar Questions

Explore conceptually related problems

In an increasing geometric series, the sum of the first and the sixth term is 66 and the product of the second and fifth term is 128 . Then the sum of the first 6 terms of the series is:

Arithemetic Series,Geometric Series and Harmonic Series Questions

Arithemetic Series,Geometric Series and Harmonic Series Questions

In a increasing geometric series, the sum of the second and the sixth term is (25)/(2) and the product of the third and fifth term is 25. then , the sum of 4^(th) , 6 ^(th) and 8^(th) terms to

The sum of an infinite geometric series is 2 and the sum of the geometric series made from the cubes of this infinite series is 24. Then the series is:

The sum of an infinite geometric series is 15 and the sum of the squares of these terms is 45.Find the series.

The sum of an infinite geometric series with positive terms is 3 and the sums of the cubes of its terms is (27)/(19) . Then the common ratio of this series is

The sum of an infinite geometric series with positive terms is 3 and the sum of the cubes of its terms is (27)/(19) . Then, the common ratio of this series is

The sum of an infinite geometric series is 3. A series which is formed by squares of its terms also have sum equal to 3. Then the series will be:

An infinite geometric series has sum 2017.A new series is obtained by squaring each term of the original series.Then what is the common ratio of the original series if newly obtained sum is 10 xx the previous sum ?

Recommended Questions
  1. Geometric Series #!#Sum Formulae

    Text Solution

    |

  2. किसी गुणोत्तर श्रेणी का प्रथम पद 1 है | तीसरे एवं पाँचवें पदों का योग...

    Text Solution

    |

  3. किसी गुणोत्तर श्रेणी का प्रथम पद 1 है। तीसरे एवं पाँचवें पदों का योग 9...

    Text Solution

    |

  4. एक अनन्त गुणोत्तर श्रेणी का योग 2 है तथा उस अनन्त गुणोत्तर श्रेणी के प...

    Text Solution

    |

  5. किसी गुणोत्तर श्रेणी का प्रथम पद 1 है । तीसरे एवं पांचवें पदों का योग ...

    Text Solution

    |

  6. किसी गुणोत्तर श्रेणी का प्रथम पद 1 है। तीसरे एवं पाँचवें पदों का योग 9...

    Text Solution

    |

  7. एक अनन्त गुणोत्तर श्रेणी का योग 2 है तथा उस अनन्त गुणोत्तर श्रेणी के प...

    Text Solution

    |

  8. किसी गुणोत्तर श्रेढ़ी के अनन्त पदों का योग 15 है तथा उनके वर्गो का योग ...

    Text Solution

    |

  9. किसी अनन्त गुणोत्तर श्रेणी का योग 2 तथा उसके घणो (Cubes)से बनी अनन्त ग...

    Text Solution

    |