Home
Class 14
MATHS
8.overset(*)(31)+0.overset(*)(6)+0.00ove...

`8.overset(*)(31)+0.overset(*)(6)+0.00overset(*)(2)` is equal to :

A

`8.overset(*)9 overset(*)1 overset(*)2`

B

`8.9 overset(*)1 overset(*)2`

C

`8.9 overset(*)7 overset(*)9`

D

`8.9 overset(*)7 overset(*)9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 8.\overline{31} + 0.\overline{6} + 0.00\overline{2} \), we will first convert each repeating decimal into a fraction. ### Step 1: Convert \( 8.\overline{31} \) to a fraction Let \( x = 8.\overline{31} \). 1. Multiply both sides by 100 (since the repeating part has 2 digits): \[ 100x = 831.\overline{31} \] 2. Now, subtract the original \( x \) from this equation: \[ 100x - x = 831.\overline{31} - 8.\overline{31} \] \[ 99x = 823 \] 3. Solve for \( x \): \[ x = \frac{823}{99} \] ### Step 2: Convert \( 0.\overline{6} \) to a fraction Let \( y = 0.\overline{6} \). 1. Multiply both sides by 10: \[ 10y = 6.\overline{6} \] 2. Subtract the original \( y \): \[ 10y - y = 6.\overline{6} - 0.\overline{6} \] \[ 9y = 6 \] 3. Solve for \( y \): \[ y = \frac{6}{9} = \frac{2}{3} \] ### Step 3: Convert \( 0.00\overline{2} \) to a fraction Let \( z = 0.00\overline{2} \). 1. Multiply both sides by 1000: \[ 1000z = 2.\overline{2} \] 2. Multiply both sides by 10: \[ 10z = 0.02\overline{2} \] 3. Subtract the second equation from the first: \[ 1000z - 10z = 2.\overline{2} - 0.02\overline{2} \] \[ 990z = 2.2 \] 4. Solve for \( z \): \[ z = \frac{2.2}{990} = \frac{22}{9900} = \frac{1}{450} \] ### Step 4: Combine all fractions Now we need to add \( \frac{823}{99} + \frac{2}{3} + \frac{1}{450} \). 1. Find a common denominator. The least common multiple of \( 99, 3, \) and \( 450 \) is \( 9900 \). 2. Convert each fraction: - For \( \frac{823}{99} \): \[ \frac{823 \times 100}{99 \times 100} = \frac{82300}{9900} \] - For \( \frac{2}{3} \): \[ \frac{2 \times 3300}{3 \times 3300} = \frac{6600}{9900} \] - For \( \frac{1}{450} \): \[ \frac{1 \times 22}{450 \times 22} = \frac{22}{9900} \] 3. Now add them together: \[ \frac{82300 + 6600 + 22}{9900} = \frac{88922}{9900} \] ### Step 5: Simplify the result Now we can simplify \( \frac{88922}{9900} \) if possible. 1. Check for common factors: - The GCD of \( 88922 \) and \( 9900 \) is \( 2 \). - Divide both numerator and denominator by \( 2 \): \[ \frac{88922 \div 2}{9900 \div 2} = \frac{44461}{4950} \] ### Final Answer The final result is: \[ \frac{44461}{4950} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • NUMBER SYSTEM

    KIRAN PUBLICATION|Exercise TYPE-VI|75 Videos
  • MISCELLANEOUS

    KIRAN PUBLICATION|Exercise TYPE-VI|15 Videos
  • PERCENTAGE

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

if overset(to)(a), overset(to)(b) " and " overset(to)(c ) are unit vectors satisfying |overset(to)(a)-overset(to)(b)|^(2)+|overset(to)(b)-overset(to)(c)|^(2)+|overset(to)(c)-overset(to)(a)|^(2)=9 |2overset(to)(a) +5overset(to)(b)+5overset(to)(c)| is equal to

Let overset(to)(a) =2hat(i) + hat(j) -2hat(k) " and " overset(to)(b) = hat(i) + hat(j) . " If " overset(to)(c ) is a vectors such that |overset(to)(a)"." overset(to)(c ) = |overset(to)( c)| , |overset(to)(c )- overset(to)(a)|= 2sqrt(2) and the angle between (overset(to)(a) xx overset(to)(b)) " and " overset(to)( c ) " is " 30^(@), " then "|(overset(to)(a) xx overset(to)(b)) xx overset(to)( c )| is equal to

If overset(to)(X) "." overset(to)(A) =0, overset(to)(X) "." overset(to)(B) =0, overset(to)(X) "." overset(to)(C ) =0 for some non-zero vector overset(to)(X) " then " [overset(to)(A) overset(to)(B) overset(to)(C )]=0

Let overset(to)(A),overset(to)(B)" and " overset(to)(C ) be unit vectors . If overset(to)(A).overset(to)(B) = overset(to)(A).overset(to)(C ) =0 and that the angle between overset(to)(B) " and " overset(to)(C )" is " pi//6. Then overset(to)(A) =+-2 (overset(to)(B)xxoverset(to)(C ))

Let overset(to)(a) , overset(to)(b) " and " overset(to)( c) be three non-zero vectors such that no two of them are collinear and (overset(to)(a) xx overset(to)(b)) xx overset(to)( c) = (1)/(3) |overset(to)(b)||overset(to)(c )|overset(to)(a). If 0 is the angle between vectors overset(to)(b) " and " overset(to)(c ) then a value of sin 0 is

if overset(to)(b) " and " overset(to)(c ) are any two non- collinear unit vectors and overset(to)(a) is any vector then (overset(to)(a).overset(to)(b))overset(to)(b).(overset(to)(a).overset(to)(c )) overset(to)(c ) + .(overset(to)(a).(overset(to)(b)xxoverset(to)(c)))/(|overset(to)(b)xxoverset(to)(c)|^(2)).(overset(to)(b)xxoverset(to)(c))=.........

Let overset(to)(a),overset(to)(b),overset(to)(c ) be unit vectors such that overset(to)(a)+overset(to)(b)+overset(to)(c ) = overset(to)(0). Which one of the following is correct ?

The scalar overset(to)(A) .[(overset(to)(B) xx overset(to)( C)) xx (overset(to)(A) + overset(to)(B) + overset(to)( C))] equals

If overset(to)(A) , overset(to)(B) " and " overset(to)( c) are vectors such that |overset(to)(B) |=|overset(to)( C ) | . Prove that | (overset(to)(A) + overset(to)(B)) xx (overset(to)(A) + overset(to)(C )) | xx (overset(to)(B) xx overset(to)(C )) . (overset(to)(B) + overset(to)( C )) = overset(to)(0)