Home
Class 14
MATHS
[(0.bar11)+(0.bar22)]xx3 is equal to...

`[(0.bar11)+(0.bar22)]xx3` is equal to

A

3

B

`1.bar9`

C

1

D

`0.bar3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \([(0.\overline{11}) + (0.\overline{22})] \times 3\), we will follow these steps: ### Step 1: Convert \(0.\overline{11}\) to a Fraction The repeating decimal \(0.\overline{11}\) can be expressed as a fraction. Since "11" has 2 digits repeating, we can use the formula: \[ 0.\overline{AB} = \frac{AB}{99} \] where \(AB\) is the repeating part. Here, \(AB = 11\), so: \[ 0.\overline{11} = \frac{11}{99} \] ### Step 2: Convert \(0.\overline{22}\) to a Fraction Similarly, for \(0.\overline{22}\), we apply the same formula: \[ 0.\overline{22} = \frac{22}{99} \] ### Step 3: Add the Two Fractions Now we will add the two fractions obtained from the previous steps: \[ 0.\overline{11} + 0.\overline{22} = \frac{11}{99} + \frac{22}{99} = \frac{11 + 22}{99} = \frac{33}{99} \] ### Step 4: Simplify the Sum The fraction \(\frac{33}{99}\) can be simplified: \[ \frac{33}{99} = \frac{1}{3} \] ### Step 5: Multiply by 3 Now we multiply the result by 3: \[ \left(\frac{33}{99}\right) \times 3 = \frac{33 \times 3}{99} = \frac{99}{99} = 1 \] ### Final Answer Therefore, the value of the expression \([(0.\overline{11}) + (0.\overline{22})] \times 3\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • NUMBER SYSTEM

    KIRAN PUBLICATION|Exercise TYPE-VI|75 Videos
  • MISCELLANEOUS

    KIRAN PUBLICATION|Exercise TYPE-VI|15 Videos
  • PERCENTAGE

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

0.12bar(3) is equal to

[(5.bar(88)-4.bar(58))-(0.bar(64)+0.bar(36))] is equal to

0.bar(001) is equal to

2.bar(6)-0.bar(82) is equal to

Let vec(x),vec(y) be two non-collinear vectors such that. (l+2m)vec(x)+(l+2n)vec(y)=0 and A(vec(a)),B(vec(b)),C(vec( c )) are three points satisfying the relation l vec(a)+m vec(b)+n vec( c )=0 . For any point P in space (bar(PA)xx bar(PB))xx[(bar(PB)xx bar(PC))xx(bar(PC)xx bar(PA))] is equal to