Home
Class 14
MATHS
The value of sqrt(((0.1)^(2) + (0.01)^(2...

The value of `sqrt(((0.1)^(2) + (0.01)^(2) + (0.009)^(2))/((0.01)^(2) + (0.001)^(2) + (0.0009)^(2)))` is :

A

`10^(2)`

B

10

C

0.1

D

0.01

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \sqrt{\frac{(0.1)^2 + (0.01)^2 + (0.009)^2}{(0.01)^2 + (0.001)^2 + (0.0009)^2}}, \] we will follow these steps: ### Step 1: Calculate the squares in the numerator First, we calculate each term in the numerator: - \((0.1)^2 = 0.01\) - \((0.01)^2 = 0.0001\) - \((0.009)^2 = 0.000081\) Now, we sum these values: \[ 0.01 + 0.0001 + 0.000081 = 0.010181. \] ### Step 2: Calculate the squares in the denominator Next, we calculate each term in the denominator: - \((0.01)^2 = 0.0001\) - \((0.001)^2 = 0.000001\) - \((0.0009)^2 = 0.00000081\) Now, we sum these values: \[ 0.0001 + 0.000001 + 0.00000081 = 0.00010081. \] ### Step 3: Form the fraction Now we can form the fraction: \[ \frac{0.010181}{0.00010081}. \] ### Step 4: Simplify the fraction To simplify the fraction, we can multiply both the numerator and the denominator by \(100000\) to eliminate the decimal points: \[ \frac{0.010181 \times 100000}{0.00010081 \times 100000} = \frac{1018.1}{10.081}. \] ### Step 5: Perform the division Now we perform the division: \[ \frac{1018.1}{10.081} \approx 101.5. \] ### Step 6: Take the square root Finally, we take the square root of the result: \[ \sqrt{101.5} \approx 10. \] Thus, the value of the original expression is approximately \(10\). ### Final Answer: The value of the expression is \(10\). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-II|43 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-III|17 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • STATISTICS AND DATA INTERPRETATION

    KIRAN PUBLICATION|Exercise TYPE-VIII|8 Videos

Similar Questions

Explore conceptually related problems

Find the value of ((0.01)^(2)+(0.22)^(2)+(0.333)^(2))/((0.001)^(2)+(0.022)^(2)+(0.0333)^(2))

{((0.1)^2-(0.01)^2)/0.0001}+1=?

Knowledge Check

  • The value of ((0.03)^(2) - (0.01)^(2))/(0.03 - 0.01) is :

    A
    0.02
    B
    0.004
    C
    0.4
    D
    0.04
  • {((0.1)^(2) - (0.01)^(2))/(0.0001) + 1} is equal to

    A
    1010
    B
    110
    C
    101
    D
    100
  • {((0.1)^(2) - (0.01)^(2))/(0.0001) + 1} is equal to

    A
    `1010`
    B
    110
    C
    101
    D
    100
  • Similar Questions

    Explore conceptually related problems

    The value of ((0.96)^(3)-(0.1)^(3))/((0.96)^(2)+(0.096)+0.01) is

    The value of ((0.03)^2-(0.01)^2)/(0.03 - 0.01) is :

    The value of ((0.03)^2-(0.01)^2)/(0.03-0.01) is:

    What is the value of (1)/((0.1)^(2))+(1)/((0.01)^(2))+(1)/((0.5)^(2))+(1)/((0.05)^(2)) ?

    What is the value of (1)/((0.1)^(2))+(1)/((0.01)^(2))+(1)/((0.2)^(2))+(1)/((0.02)^(2))+(1)/((0.5)^(2))+(1)/((0.05)^(2))