Home
Class 14
MATHS
Find the value of sqrt(248 + sqrt(52 + s...

Find the value of `sqrt(248 + sqrt(52 + sqrt(144)))`

A

-16

B

`+- 16`

C

16

D

16.2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{248 + \sqrt{52 + \sqrt{144}}} \), we will break it down step by step. ### Step 1: Simplify the innermost square root First, we need to simplify \( \sqrt{144} \): \[ \sqrt{144} = 12 \] ### Step 2: Substitute back into the expression Now we substitute \( \sqrt{144} \) back into the expression: \[ \sqrt{52 + \sqrt{144}} = \sqrt{52 + 12} \] This simplifies to: \[ \sqrt{52 + 12} = \sqrt{64} \] ### Step 3: Simplify the next square root Now we simplify \( \sqrt{64} \): \[ \sqrt{64} = 8 \] ### Step 4: Substitute back into the outer expression Now we substitute \( \sqrt{64} \) back into the expression: \[ \sqrt{248 + \sqrt{52 + \sqrt{144}}} = \sqrt{248 + 8} \] This simplifies to: \[ \sqrt{248 + 8} = \sqrt{256} \] ### Step 5: Simplify the final square root Now we simplify \( \sqrt{256} \): \[ \sqrt{256} = 16 \] ### Conclusion Thus, the value of \( \sqrt{248 + \sqrt{52 + \sqrt{144}}} \) is: \[ \boxed{16} \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-II|43 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-III|17 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • STATISTICS AND DATA INTERPRETATION

    KIRAN PUBLICATION|Exercise TYPE-VIII|8 Videos

Similar Questions

Explore conceptually related problems

Find the value of sqrt(6 - sqrt35)

The value of sqrt(248+sqrt(52+sqrt(144))) is

Find the value of sqrt(18)xx sqrt(3)

Find the value of sqrt(48)-sqrt(192)+sqrt(75)

Find the value of 1/(sqrt9 - sqrt4)

Find the value of sqrt 8- sqrt 4 - sqrt 2 .

Find the value of sqrt(4+ sqrt144) sqrt(4+ sqrt144) का मान क्या है ?

Find the value of sqrt 75+ sqrt 48+ sqrt 12

KIRAN PUBLICATION-SIMPLIFICATION-TEST YOURSELF
  1. Find the value of sqrt(248 + sqrt(52 + sqrt(144)))

    Text Solution

    |

  2. Simplify : 1 + (1)/(1 + (2)/(2 + (3)/(1 + (4)/(5))))

    Text Solution

    |

  3. Simplify the following expressions: 2 - 1/(3+1/(4-1/(5+1/(6-1/(7)))...

    Text Solution

    |

  4. Simplify : 7 (1)/(2) - [2 (1)/(4) + {(1)/(4)-(1)/(2) (1 (1)/(2) - (1)/...

    Text Solution

    |

  5. Simplify : 3 div [(8-5) div {(4-2) div (2 + (8)/(13))}] = ?

    Text Solution

    |

  6. Simplify : 5(1)/(2) - [2 (1)/(3) div {(3)/(4) - (1)/(2) ((2)/(3) - bar...

    Text Solution

    |

  7. Simplify : (3.5 xx 1.5)/(0.025 + 0.125 xx 7.5) xx (1)/(3 + (1)/(1 + (1...

    Text Solution

    |

  8. Simplify : (3)/(4 + (5)/(6 + (7)/(8)))-(3)/(5) + (1)/(2) "of 1"(1)/(5)...

    Text Solution

    |

  9. Simplify : 2 div (3)/(17) "of" (2 (3)/(4)+ 3(5)/(8)) + (2)/(5) div 2 (...

    Text Solution

    |

  10. (2.5 xx 3 + 7.5 div 2.5 - "0.5 of 3")/(47 + 12 div 1.5 - "6 of 2" xx 3...

    Text Solution

    |

  11. Simplify : (17)/(7 + (3)/(4 - 2(3)/(4)))xx (2021)/(2193) div (1 (37)/(...

    Text Solution

    |

  12. Simplify : 999 (998)/(999) xx 999 + 999

    Text Solution

    |

  13. Simplify : (8 (3)/(5) + 7 (3)/(4) + 5 (2)/(3) - 4 (1)/(2))/(13 - 11 (9...

    Text Solution

    |

  14. (1 (7)/(9)"of" (27)/(64))/((11)/(12) xx 9 (9)/(11)) div (4 (4)/(7) "of...

    Text Solution

    |

  15. Simplify : 120 + "3 of 5" div [7 xx 2 {10 div 5(24 - 10 xx 2 + bar(7 +...

    Text Solution

    |

  16. Simplify : (1)/(8)"of" ((1)/(10)-(1)/(11))div ((1)/(7) - (1)/(9) div (...

    Text Solution

    |

  17. Simplify : (2(4)/(9) div 3 (2)/(3) "of" (2)/(5) xx (3)/(5) + 1 (1)/(9)...

    Text Solution

    |

  18. Simplify : (5 + 5 xx 5)/(5 xx 5 + 5) xx ((1)/(5) div (1)/(5) "of" (1)/...

    Text Solution

    |

  19. Simplify : ((5)/(6) + (7)/(8)"of" (4)/(5) div (3)/(4) "of" (9)/(10))/(...

    Text Solution

    |

  20. Simplify : ((2)/(3) div (3)/(4)"of" (5)/(6))/((2)/(3) div (3)/(4) xx (...

    Text Solution

    |

  21. If the numerator of a fraction is increased by (1)/(4) and the denomin...

    Text Solution

    |