Home
Class 14
MATHS
sqrt((0.798)^(2) + 0.404 xx 0.798 + (0.2...

`sqrt((0.798)^(2) + 0.404 xx 0.798 + (0.202)^(2)) + 1 = ?`

A

0

B

2

C

1.596

D

0.404

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{(0.798)^2 + 0.404 \times 0.798 + (0.202)^2} + 1 \), we can follow these steps: ### Step 1: Identify the components of the expression We have: - \( A = 0.798 \) - \( B = 0.202 \) - The term \( 0.404 \) can be rewritten as \( 2 \times 0.202 \times 0.798 \). ### Step 2: Rewrite the expression using the formula for the square of a binomial We can recognize that the expression inside the square root follows the pattern of the square of a binomial: \[ A^2 + 2AB + B^2 = (A + B)^2 \] Thus, we can rewrite: \[ (0.798)^2 + 0.404 \times 0.798 + (0.202)^2 = (0.798 + 0.202)^2 \] ### Step 3: Calculate \( (0.798 + 0.202) \) Now, we add the two numbers: \[ 0.798 + 0.202 = 1.000 \] ### Step 4: Substitute back into the expression Now, substituting back into the square root: \[ \sqrt{(0.798 + 0.202)^2} = \sqrt{(1.000)^2} = 1.000 \] ### Step 5: Add 1 to the result Finally, we add 1 to the result: \[ 1.000 + 1 = 2 \] ### Final Answer Thus, the final answer is: \[ \boxed{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-II|43 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-III|17 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • STATISTICS AND DATA INTERPRETATION

    KIRAN PUBLICATION|Exercise TYPE-VIII|8 Videos

Similar Questions

Explore conceptually related problems

sqrt((0.798)^(2)+0.404xx0.798+(0.202)^(2))+1 is equal to

0.2 xx 0.3 = 0.6

(0.2 xx 0.2 xx 0.2 ) (0.06 xx 0.06 xx 0.06) ÷ (0.12 xx 0.12 xx 0.12) =? A . 0.008 B . 0.001 C. 0.002 D. 0.006

Find the value of frac((0.0112 - 0.0012) xx 0.14 + 0.025 xx 0.2 )(0.02 xx 0.01)

KIRAN PUBLICATION-SIMPLIFICATION-TEST YOURSELF
  1. sqrt((0.798)^(2) + 0.404 xx 0.798 + (0.202)^(2)) + 1 = ?

    Text Solution

    |

  2. Simplify : 1 + (1)/(1 + (2)/(2 + (3)/(1 + (4)/(5))))

    Text Solution

    |

  3. Simplify the following expressions: 2 - 1/(3+1/(4-1/(5+1/(6-1/(7)))...

    Text Solution

    |

  4. Simplify : 7 (1)/(2) - [2 (1)/(4) + {(1)/(4)-(1)/(2) (1 (1)/(2) - (1)/...

    Text Solution

    |

  5. Simplify : 3 div [(8-5) div {(4-2) div (2 + (8)/(13))}] = ?

    Text Solution

    |

  6. Simplify : 5(1)/(2) - [2 (1)/(3) div {(3)/(4) - (1)/(2) ((2)/(3) - bar...

    Text Solution

    |

  7. Simplify : (3.5 xx 1.5)/(0.025 + 0.125 xx 7.5) xx (1)/(3 + (1)/(1 + (1...

    Text Solution

    |

  8. Simplify : (3)/(4 + (5)/(6 + (7)/(8)))-(3)/(5) + (1)/(2) "of 1"(1)/(5)...

    Text Solution

    |

  9. Simplify : 2 div (3)/(17) "of" (2 (3)/(4)+ 3(5)/(8)) + (2)/(5) div 2 (...

    Text Solution

    |

  10. (2.5 xx 3 + 7.5 div 2.5 - "0.5 of 3")/(47 + 12 div 1.5 - "6 of 2" xx 3...

    Text Solution

    |

  11. Simplify : (17)/(7 + (3)/(4 - 2(3)/(4)))xx (2021)/(2193) div (1 (37)/(...

    Text Solution

    |

  12. Simplify : 999 (998)/(999) xx 999 + 999

    Text Solution

    |

  13. Simplify : (8 (3)/(5) + 7 (3)/(4) + 5 (2)/(3) - 4 (1)/(2))/(13 - 11 (9...

    Text Solution

    |

  14. (1 (7)/(9)"of" (27)/(64))/((11)/(12) xx 9 (9)/(11)) div (4 (4)/(7) "of...

    Text Solution

    |

  15. Simplify : 120 + "3 of 5" div [7 xx 2 {10 div 5(24 - 10 xx 2 + bar(7 +...

    Text Solution

    |

  16. Simplify : (1)/(8)"of" ((1)/(10)-(1)/(11))div ((1)/(7) - (1)/(9) div (...

    Text Solution

    |

  17. Simplify : (2(4)/(9) div 3 (2)/(3) "of" (2)/(5) xx (3)/(5) + 1 (1)/(9)...

    Text Solution

    |

  18. Simplify : (5 + 5 xx 5)/(5 xx 5 + 5) xx ((1)/(5) div (1)/(5) "of" (1)/...

    Text Solution

    |

  19. Simplify : ((5)/(6) + (7)/(8)"of" (4)/(5) div (3)/(4) "of" (9)/(10))/(...

    Text Solution

    |

  20. Simplify : ((2)/(3) div (3)/(4)"of" (5)/(6))/((2)/(3) div (3)/(4) xx (...

    Text Solution

    |

  21. If the numerator of a fraction is increased by (1)/(4) and the denomin...

    Text Solution

    |