Home
Class 14
MATHS
The simplified value of (3 sqrt(2))/(sqr...

The simplified value of `(3 sqrt(2))/(sqrt(3) + sqrt(6)) - (4 sqrt(3))/(sqrt(6) + sqrt(2)) + (sqrt(6))/(sqrt(3) + sqrt(2))` is

A

a) `sqrt(2)`

B

b) `(1)/(sqrt(2))`

C

c) `sqrt(3) - sqrt(2)`

D

d) 0

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \frac{3 \sqrt{2}}{\sqrt{3} + \sqrt{6}} - \frac{4 \sqrt{3}}{\sqrt{6} + \sqrt{2}} + \frac{\sqrt{6}}{\sqrt{3} + \sqrt{2}}, \] we will follow these steps: ### Step 1: Rationalize the first term We start with the first term: \[ \frac{3 \sqrt{2}}{\sqrt{3} + \sqrt{6}}. \] To rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator, which is \(\sqrt{6} - \sqrt{3}\): \[ \frac{3 \sqrt{2} (\sqrt{6} - \sqrt{3})}{(\sqrt{3} + \sqrt{6})(\sqrt{6} - \sqrt{3})}. \] The denominator simplifies as follows: \[ (\sqrt{3} + \sqrt{6})(\sqrt{6} - \sqrt{3}) = 6 - 3 = 3. \] Thus, the first term becomes: \[ \frac{3 \sqrt{2} (\sqrt{6} - \sqrt{3})}{3} = \sqrt{2} (\sqrt{6} - \sqrt{3}) = \sqrt{12} - \sqrt{6}. \] ### Step 2: Rationalize the second term Next, we consider the second term: \[ \frac{4 \sqrt{3}}{\sqrt{6} + \sqrt{2}}. \] Again, we rationalize the denominator by multiplying by the conjugate: \[ \frac{4 \sqrt{3} (\sqrt{6} - \sqrt{2})}{(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})}. \] The denominator simplifies to: \[ 6 - 2 = 4. \] Thus, the second term becomes: \[ \frac{4 \sqrt{3} (\sqrt{6} - \sqrt{2})}{4} = \sqrt{3} (\sqrt{6} - \sqrt{2}) = \sqrt{18} - \sqrt{6}. \] ### Step 3: Rationalize the third term Now we look at the third term: \[ \frac{\sqrt{6}}{\sqrt{3} + \sqrt{2}}. \] We rationalize the denominator again: \[ \frac{\sqrt{6} (\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})}. \] The denominator simplifies to: \[ 3 - 2 = 1. \] Thus, the third term becomes: \[ \sqrt{6} (\sqrt{3} - \sqrt{2}) = \sqrt{18} - \sqrt{12}. \] ### Step 4: Combine all terms Now we combine all three simplified terms: \[ (\sqrt{12} - \sqrt{6}) - (\sqrt{18} - \sqrt{6}) + (\sqrt{18} - \sqrt{12}). \] This simplifies to: \[ \sqrt{12} - \sqrt{6} - \sqrt{18} + \sqrt{6} + \sqrt{18} - \sqrt{12}. \] ### Step 5: Simplify the expression Now we can see that: - \(\sqrt{12}\) and \(-\sqrt{12}\) cancel each other. - \(-\sqrt{6}\) and \(+\sqrt{6}\) cancel each other. - \(-\sqrt{18}\) and \(+\sqrt{18}\) cancel each other. Thus, the entire expression simplifies to: \[ 0. \] ### Final Answer The simplified value of the expression is: \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-II|43 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-III|17 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • STATISTICS AND DATA INTERPRETATION

    KIRAN PUBLICATION|Exercise TYPE-VIII|8 Videos

Similar Questions

Explore conceptually related problems

(3+sqrt(6))/(sqrt(3)+sqrt(2))

(3sqrt(2))/(sqrt(3)+sqrt(6))-(4sqrt(3))/(sqrt(6)+sqrt(2))+(sqrt(6))/(sqrt(3)+sqrt(2))

Simplify : (3sqrt(2))/(sqrt(6)-sqrt(3))-(4sqrt(3))/(sqrt(6)-sqrt(2))+(2sqrt(3))/(sqrt(6)+2)

(sqrt(2))/(sqrt(6)-sqrt(2))-(sqrt(3))/(sqrt(6)+sqrt(2))

(6implify:)/(2sqrt(3)-sqrt(6))+(sqrt(6))/(sqrt(3)+sqrt(2))-(4sqrt(3))/(sqrt(6)-sqrt(2))

(3sqrt(2))/(sqrt(6)-sqrt(3))+(2sqrt(3))/(sqrt(6)+2)-(4sqrt(3))/(sqrt(6)-sqrt(2))

[(3sqrt2)/(sqrt3 + sqrt6) - (4sqrt3)/(sqrt6 + sqrt2) + (sqrt6)/(sqrt2 + sqrt3)] is simplified to

KIRAN PUBLICATION-SIMPLIFICATION-TEST YOURSELF
  1. The simplified value of (3 sqrt(2))/(sqrt(3) + sqrt(6)) - (4 sqrt(3))/...

    Text Solution

    |

  2. Simplify : 1 + (1)/(1 + (2)/(2 + (3)/(1 + (4)/(5))))

    Text Solution

    |

  3. Simplify the following expressions: 2 - 1/(3+1/(4-1/(5+1/(6-1/(7)))...

    Text Solution

    |

  4. Simplify : 7 (1)/(2) - [2 (1)/(4) + {(1)/(4)-(1)/(2) (1 (1)/(2) - (1)/...

    Text Solution

    |

  5. Simplify : 3 div [(8-5) div {(4-2) div (2 + (8)/(13))}] = ?

    Text Solution

    |

  6. Simplify : 5(1)/(2) - [2 (1)/(3) div {(3)/(4) - (1)/(2) ((2)/(3) - bar...

    Text Solution

    |

  7. Simplify : (3.5 xx 1.5)/(0.025 + 0.125 xx 7.5) xx (1)/(3 + (1)/(1 + (1...

    Text Solution

    |

  8. Simplify : (3)/(4 + (5)/(6 + (7)/(8)))-(3)/(5) + (1)/(2) "of 1"(1)/(5)...

    Text Solution

    |

  9. Simplify : 2 div (3)/(17) "of" (2 (3)/(4)+ 3(5)/(8)) + (2)/(5) div 2 (...

    Text Solution

    |

  10. (2.5 xx 3 + 7.5 div 2.5 - "0.5 of 3")/(47 + 12 div 1.5 - "6 of 2" xx 3...

    Text Solution

    |

  11. Simplify : (17)/(7 + (3)/(4 - 2(3)/(4)))xx (2021)/(2193) div (1 (37)/(...

    Text Solution

    |

  12. Simplify : 999 (998)/(999) xx 999 + 999

    Text Solution

    |

  13. Simplify : (8 (3)/(5) + 7 (3)/(4) + 5 (2)/(3) - 4 (1)/(2))/(13 - 11 (9...

    Text Solution

    |

  14. (1 (7)/(9)"of" (27)/(64))/((11)/(12) xx 9 (9)/(11)) div (4 (4)/(7) "of...

    Text Solution

    |

  15. Simplify : 120 + "3 of 5" div [7 xx 2 {10 div 5(24 - 10 xx 2 + bar(7 +...

    Text Solution

    |

  16. Simplify : (1)/(8)"of" ((1)/(10)-(1)/(11))div ((1)/(7) - (1)/(9) div (...

    Text Solution

    |

  17. Simplify : (2(4)/(9) div 3 (2)/(3) "of" (2)/(5) xx (3)/(5) + 1 (1)/(9)...

    Text Solution

    |

  18. Simplify : (5 + 5 xx 5)/(5 xx 5 + 5) xx ((1)/(5) div (1)/(5) "of" (1)/...

    Text Solution

    |

  19. Simplify : ((5)/(6) + (7)/(8)"of" (4)/(5) div (3)/(4) "of" (9)/(10))/(...

    Text Solution

    |

  20. Simplify : ((2)/(3) div (3)/(4)"of" (5)/(6))/((2)/(3) div (3)/(4) xx (...

    Text Solution

    |

  21. If the numerator of a fraction is increased by (1)/(4) and the denomin...

    Text Solution

    |