Home
Class 14
MATHS
root(3)((19)/(513)) is equal to...

`root(3)((19)/(513))` is equal to

A

a) `(1)/(9)`

B

b) `(1)/(3)`

C

c) `(1)/(sqrt(27))`

D

d) `(1)/(sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sqrt[3]{\frac{19}{513}} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sqrt[3]{\frac{19}{513}} \] ### Step 2: Factor the denominator Next, we can factor the denominator \( 513 \). We find that: \[ 513 = 19 \times 27 \] So we can rewrite the expression as: \[ \sqrt[3]{\frac{19}{19 \times 27}} \] ### Step 3: Simplify the fraction Now, we can simplify the fraction: \[ \frac{19}{19 \times 27} = \frac{1}{27} \] Thus, the expression becomes: \[ \sqrt[3]{\frac{1}{27}} \] ### Step 4: Apply the cube root The cube root of \( \frac{1}{27} \) can be expressed as: \[ \sqrt[3]{\frac{1}{27}} = \frac{1}{\sqrt[3]{27}} \] Since \( 27 = 3^3 \), we have: \[ \sqrt[3]{27} = 3 \] So, we can write: \[ \frac{1}{\sqrt[3]{27}} = \frac{1}{3} \] ### Final Answer Thus, the value of \( \sqrt[3]{\frac{19}{513}} \) is: \[ \frac{1}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-III|17 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-IV|117 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • STATISTICS AND DATA INTERPRETATION

    KIRAN PUBLICATION|Exercise TYPE-VIII|8 Videos

Similar Questions

Explore conceptually related problems

root(3)(1 - 127/343) is equal to

The value of the limit lim_(x rarr oo)(root(3)(x^(3)+x^(2))-root(3)(x^(3)-x^(2))) is equal to

lim_ (n rarr oo) ((root (3) (n!)) / (n)) is equal to

root(3)(root(3)(a^(3))) is equal to