Home
Class 14
MATHS
If 2 = x + (1)/(1 + (1)/(3 + (1)/(4))), ...

If `2 = x + (1)/(1 + (1)/(3 + (1)/(4)))`, then the value of x is :

A

`(18)/(17)`

B

`(21)/(17)`

C

`(13)/(17)`

D

`(12)/(17)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 = x + \frac{1}{1 + \frac{1}{3 + \frac{1}{4}}} \), we will simplify the right-hand side step by step. ### Step 1: Simplify the innermost fraction First, we simplify the innermost fraction \( \frac{1}{4} \): \[ 3 + \frac{1}{4} = 3 + 0.25 = 3.25 = \frac{13}{4} \] So, we rewrite the equation: \[ 2 = x + \frac{1}{1 + \frac{1}{\frac{13}{4}}} \] ### Step 2: Simplify the next fraction Now, we simplify \( \frac{1}{\frac{13}{4}} \): \[ \frac{1}{\frac{13}{4}} = \frac{4}{13} \] Now the equation becomes: \[ 2 = x + \frac{1}{1 + \frac{4}{13}} \] ### Step 3: Combine the fractions in the denominator Next, we simplify \( 1 + \frac{4}{13} \): \[ 1 + \frac{4}{13} = \frac{13}{13} + \frac{4}{13} = \frac{17}{13} \] Now we have: \[ 2 = x + \frac{1}{\frac{17}{13}} \] ### Step 4: Simplify the fraction Now, we simplify \( \frac{1}{\frac{17}{13}} \): \[ \frac{1}{\frac{17}{13}} = \frac{13}{17} \] So the equation now is: \[ 2 = x + \frac{13}{17} \] ### Step 5: Isolate \( x \) To isolate \( x \), we subtract \( \frac{13}{17} \) from both sides: \[ x = 2 - \frac{13}{17} \] ### Step 6: Convert 2 to a fraction We convert 2 into a fraction with a denominator of 17: \[ 2 = \frac{34}{17} \] Now we can write: \[ x = \frac{34}{17} - \frac{13}{17} \] ### Step 7: Perform the subtraction Now we perform the subtraction: \[ x = \frac{34 - 13}{17} = \frac{21}{17} \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{\frac{21}{17}} \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-IV|117 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-V|5 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-II|43 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • STATISTICS AND DATA INTERPRETATION

    KIRAN PUBLICATION|Exercise TYPE-VIII|8 Videos

Similar Questions

Explore conceptually related problems

If x-1/x=2, then the value of x^4+1/x^4 is :

If 1/(2!) + 1/(3!) = x/(4!) , find the value of x

If (x-1/x)=4 then the value of (x^2+1/x^2) is

if x-(1)/(x)=2, then the value of x^(4)+(1)/(x^(4)) is