Home
Class 14
MATHS
sqrt((4 (1)/(7) - 2 (1)/(4))/(3 (1)/(2) ...

`sqrt((4 (1)/(7) - 2 (1)/(4))/(3 (1)/(2) + 1 (1)/(7)) + (2)/(2 + (1)/(2 + (1)/(5 - (1)/(5)))))` is equal to

A

1

B

4

C

3

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \sqrt{\frac{4 \frac{1}{7} - 2 \frac{1}{4}}{3 \frac{1}{2} + 1 \frac{1}{7}} + \frac{2}{2 + \frac{1}{2 + \frac{1}{5 - \frac{1}{5}}}}} \] we will break it down step by step. ### Step 1: Convert Mixed Numbers to Improper Fractions First, we convert the mixed numbers to improper fractions: - \(4 \frac{1}{7} = \frac{4 \times 7 + 1}{7} = \frac{29}{7}\) - \(2 \frac{1}{4} = \frac{2 \times 4 + 1}{4} = \frac{9}{4}\) - \(3 \frac{1}{2} = \frac{3 \times 2 + 1}{2} = \frac{7}{2}\) - \(1 \frac{1}{7} = \frac{1 \times 7 + 1}{7} = \frac{8}{7}\) ### Step 2: Substitute the Improper Fractions Now substitute these values back into the expression: \[ \sqrt{\frac{\frac{29}{7} - \frac{9}{4}}{\frac{7}{2} + \frac{8}{7}} + \frac{2}{2 + \frac{1}{2 + \frac{1}{5 - \frac{1}{5}}}}} \] ### Step 3: Solve the Numerator and Denominator Separately #### Numerator: \[ \frac{29}{7} - \frac{9}{4} \] To subtract these fractions, we need a common denominator. The least common multiple of 7 and 4 is 28. \[ = \frac{29 \times 4}{28} - \frac{9 \times 7}{28} = \frac{116}{28} - \frac{63}{28} = \frac{53}{28} \] #### Denominator: \[ \frac{7}{2} + \frac{8}{7} \] Again, we find a common denominator, which is 14. \[ = \frac{7 \times 7}{14} + \frac{8 \times 2}{14} = \frac{49}{14} + \frac{16}{14} = \frac{65}{14} \] ### Step 4: Substitute Back into the Expression Now substitute back into the expression: \[ \sqrt{\frac{\frac{53}{28}}{\frac{65}{14}} + \frac{2}{2 + \frac{1}{2 + 0}}} \] ### Step 5: Simplify the Fraction To simplify \(\frac{\frac{53}{28}}{\frac{65}{14}}\): \[ = \frac{53}{28} \times \frac{14}{65} = \frac{53 \times 14}{28 \times 65} = \frac{53 \times 1}{2 \times 65} = \frac{53}{130} \] ### Step 6: Simplify the Second Term Now simplify the second term: \[ 2 + \frac{1}{2 + 0} = 2 + \frac{1}{2} = \frac{4}{2} + \frac{1}{2} = \frac{5}{2} \] So, \[ \frac{2}{\frac{5}{2}} = 2 \times \frac{2}{5} = \frac{4}{5} \] ### Step 7: Combine the Two Parts Now combine both parts: \[ \sqrt{\frac{53}{130} + \frac{4}{5}} \] Convert \(\frac{4}{5}\) to have a common denominator of 130: \[ \frac{4}{5} = \frac{4 \times 26}{5 \times 26} = \frac{104}{130} \] Now combine: \[ \frac{53}{130} + \frac{104}{130} = \frac{157}{130} \] ### Step 8: Final Expression Now we have: \[ \sqrt{\frac{157}{130}} \] ### Step 9: Simplify the Square Root This can be simplified to: \[ \frac{\sqrt{157}}{\sqrt{130}} \] ### Conclusion Thus, the final answer is: \[ \sqrt{\frac{157}{130}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-IV|117 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-V|5 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-II|43 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • STATISTICS AND DATA INTERPRETATION

    KIRAN PUBLICATION|Exercise TYPE-VIII|8 Videos

Similar Questions

Explore conceptually related problems

1+(3)/(2+(1)/(4+(5)/(7)))

4(1)/(3) - 3 (2)/3 -:1(1)/(3) + ? -: 3 (1)/(2) -: 1(1)/(5) =7

Knowledge Check

  • On simplification, the expression (4 (1)/(7) - 2 (1)/(7))/(3 (1)/(2) + 1 (1)/(7)) + (1)/(2 + (1)/(2 + (1)/(5 - (1)/(5)))) is equal to

    A
    `(28)/(65)`
    B
    `(24)/(53)`
    C
    `(56)/(53)`
    D
    `(14)/(65)`
  • Simplify : (4(1)/(7)-2(1)/(4))/(3+(1)/(2)+1(1)/(7))+(1)/(2+(1)/(2+(1)/(5-(1)/(5))))

    A
    0
    B
    `-1`
    C
    `3(1)/(24)`
    D
    `53/65`
  • (1)/(1.3) + (1)/(2.5) + (1)/(3.7) + (1)/(4.9) +... is equal to

    A
    `2 log_(e) 2-2`
    B
    `2-log_(e)2`
    C
    `2log_(e)4`
    D
    `log_(e)4`
  • Similar Questions

    Explore conceptually related problems

    7(1)/(2)+(1)/(2)+(1)/(2) of (1)/(4)-(2)/(5)xx2(1)/(3)-:1(1)/(8) of (1(2)/(5)-1(1)/(3))

    (7(1)/(2)-5(3)/(4) )/(3(1)/(2)+ ? )-:((1)/(2)+1(1)/(4))/(1(1)/(5)+3(1)/(2))=0.6

    1-(5)/(7+(1)/(4+(1)/(2+(1)/(3))))

    The value of (4 1/7 - 2 1/4)/(3 1/2 + 1 1/7) div 1/(2+1/(2 + 1/(5 - 1/5))) .

    The value of (3(2)/(3) div (11)/(30) " of " (2)/(3) -(1)/(4) " of " 2(1)/(2) div (3)/(5) xx 4(4)/(5))/((2)/(5) " of " 7(1)/(2) div (3)/(4) -(3)/(4) xx 1(1)/(2) div 2(1)/(4)) is :