Home
Class 14
MATHS
The value of (2 (1)/(3) -1 (2)/(11))/(3 ...

The value of `(2 (1)/(3) -1 (2)/(11))/(3 + (1)/(3 + (1)/(3 + (1)/(3))))` is

A

`(38)/(109)`

B

`(109)/(38)`

C

1

D

`(116)/(109)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((2 \frac{1}{3} - 1 \frac{2}{11}) / (3 + \frac{1}{3 + \frac{1}{3 + \frac{1}{3}}})\), we will break it down step by step. ### Step 1: Convert Mixed Numbers to Improper Fractions First, we convert the mixed numbers into improper fractions. 1. \(2 \frac{1}{3} = \frac{2 \times 3 + 1}{3} = \frac{6 + 1}{3} = \frac{7}{3}\) 2. \(1 \frac{2}{11} = \frac{1 \times 11 + 2}{11} = \frac{11 + 2}{11} = \frac{13}{11}\) Now, we rewrite the expression: \[ \frac{\frac{7}{3} - \frac{13}{11}}{3 + \frac{1}{3 + \frac{1}{3 + \frac{1}{3}}}} \] ### Step 2: Find a Common Denominator for the Numerator Next, we need to subtract the fractions in the numerator. The common denominator for \(3\) and \(11\) is \(33\). 1. Convert \(\frac{7}{3}\) to have a denominator of \(33\): \[ \frac{7}{3} = \frac{7 \times 11}{3 \times 11} = \frac{77}{33} \] 2. Convert \(\frac{13}{11}\) to have a denominator of \(33\): \[ \frac{13}{11} = \frac{13 \times 3}{11 \times 3} = \frac{39}{33} \] Now we can subtract: \[ \frac{77}{33} - \frac{39}{33} = \frac{77 - 39}{33} = \frac{38}{33} \] ### Step 3: Simplify the Denominator Now we simplify the denominator \(3 + \frac{1}{3 + \frac{1}{3 + \frac{1}{3}}}\). 1. Start from the innermost fraction: \[ 3 + \frac{1}{3} = \frac{3 \times 3 + 1}{3} = \frac{9 + 1}{3} = \frac{10}{3} \] 2. Now substitute back: \[ 3 + \frac{1}{\frac{10}{3}} = 3 + \frac{3}{10} = \frac{3 \times 10 + 3}{10} = \frac{30 + 3}{10} = \frac{33}{10} \] ### Step 4: Rewrite the Expression Now we can rewrite the entire expression: \[ \frac{\frac{38}{33}}{\frac{33}{10}} = \frac{38}{33} \times \frac{10}{33} = \frac{38 \times 10}{33 \times 33} = \frac{380}{1089} \] ### Final Answer Thus, the value of the expression is: \[ \frac{380}{1089} \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-IV|117 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-V|5 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-II|43 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • STATISTICS AND DATA INTERPRETATION

    KIRAN PUBLICATION|Exercise TYPE-VIII|8 Videos

Similar Questions

Explore conceptually related problems

Find the value of (2(1)/(2) - 1(2)/(11))/(3 + (1)/(3 + (1)/(3 + (1 )/(3 ))))

The value of [2-3(2-3)^(-1)]^(-1) is :

the value of [2-3(2-3)^(-1)]^(-1) is

(7)/(11)-"[1 (1)/(2)-[(1)/(2)+(1(3)/(4)-(1)/(2)+(1)/(3))]]

Find the value of ( 1^3 + 2^3 + 3^3 ) ^(-1/2)

3(7)/(11)+7(3)/(11)xx1(1)/(2)=?