Home
Class 14
MATHS
When ((1)/(2) - (1)/(4) + (1)/(5) - (1)/...

When `((1)/(2) - (1)/(4) + (1)/(5) - (1)/(6))` is divided by `((2)/(5) - (5)/(9) + (3)/(5) - (7)/(18))`, the result is :

A

`5 (1)/(10)`

B

`2 (1)/(18)`

C

`3 (1)/(6)`

D

`3 (3)/(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of dividing the expression \(\left(\frac{1}{2} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6}\right)\) by \(\left(\frac{2}{5} - \frac{5}{9} + \frac{3}{5} - \frac{7}{18}\right)\), we will follow these steps: ### Step 1: Simplify the numerator We start with the expression in the numerator: \[ \frac{1}{2} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} \] To simplify this, we first find a common denominator. The least common multiple (LCM) of \(2\), \(4\), \(5\), and \(6\) is \(60\). Now, we convert each fraction: \[ \frac{1}{2} = \frac{30}{60}, \quad \frac{1}{4} = \frac{15}{60}, \quad \frac{1}{5} = \frac{12}{60}, \quad \frac{1}{6} = \frac{10}{60} \] Substituting these values into the expression gives: \[ \frac{30}{60} - \frac{15}{60} + \frac{12}{60} - \frac{10}{60} \] Now, we combine these fractions: \[ \frac{30 - 15 + 12 - 10}{60} = \frac{17}{60} \] ### Step 2: Simplify the denominator Next, we simplify the expression in the denominator: \[ \frac{2}{5} - \frac{5}{9} + \frac{3}{5} - \frac{7}{18} \] Again, we find a common denominator. The LCM of \(5\), \(9\), and \(18\) is \(90\). Now, we convert each fraction: \[ \frac{2}{5} = \frac{36}{90}, \quad \frac{5}{9} = \frac{50}{90}, \quad \frac{3}{5} = \frac{54}{90}, \quad \frac{7}{18} = \frac{35}{90} \] Substituting these values into the expression gives: \[ \frac{36}{90} - \frac{50}{90} + \frac{54}{90} - \frac{35}{90} \] Now, we combine these fractions: \[ \frac{36 - 50 + 54 - 35}{90} = \frac{5}{90} = \frac{1}{18} \] ### Step 3: Divide the simplified numerator by the simplified denominator Now we divide the results from Step 1 and Step 2: \[ \frac{\frac{17}{60}}{\frac{1}{18}} = \frac{17}{60} \times \frac{18}{1} = \frac{17 \times 18}{60} = \frac{306}{60} \] Now, we simplify \(\frac{306}{60}\): \[ \frac{306 \div 6}{60 \div 6} = \frac{51}{10} \] ### Step 4: Convert to mixed number Finally, we convert \(\frac{51}{10}\) into a mixed number: \[ 51 \div 10 = 5 \quad \text{remainder } 1 \] Thus, \(\frac{51}{10} = 5 \frac{1}{10}\). ### Final Result The final result is: \[ 5 \frac{1}{10} \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-V|5 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-III|17 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • STATISTICS AND DATA INTERPRETATION

    KIRAN PUBLICATION|Exercise TYPE-VIII|8 Videos

Similar Questions

Explore conceptually related problems

(5)/(6) -: (6)/(7) xx ? - (8)/(9) -: 1 (2)/(5) -: (3)/(4) xx 3 (1)/(3) = 2(7)/(9)

The value of 6((1)/(5)) - [4((1)/(2)) - {""((1)/(6)) - (""((3)/(5)) + ""((3)/(10)) - ""((7)/(15)))}] is

Divide :1by(1)/(2) (ii) 5by(-5)/(7) (iii) (-3)/(4)by(9)/(-16)

5(5)/(6) + [2(2)/(3) - [3(3)/(4) (3(4)/(5) div 9(1)/(2))]]

The value of (3)/(4) xx 2 (2)/(3) -: (5)/(9) " of " 1(1)/(5) + (2)/(23) xx 3 (5)/(6) -: (2)/(7) " of " 2(1)/(3) is :

1(5)/(6)+[2(2)/(3)-{3(3)/(4)(3(4)/(5)-:9(1)/(2))}]

(+7)+(+2)= (1) +9 (2) -9 (3) +5 (4) -5

(1+(1)/(3)+(1)/(3)*(3)/(3)+(1)/(3)*(5)/(9)*(5)/(9)+(1)/(3)*(3)/(6)*(5)/(9)*(7)/(12)+)^(2)

" (iii) ((-2)/(5)+(4)/(7))+((-2)/(5)) ( iv )(3)/(4)+(7)/(6)+((-5)/(4))+(1)/(2)

KIRAN PUBLICATION-SIMPLIFICATION-TYPE-IV
  1. On simplification 3034 - (1002 div 20.04) is equal to

    Text Solution

    |

  2. When simplified, the expression (100)^((1)/(2)) xx (0.001)^((1)/(3))-(...

    Text Solution

    |

  3. When ((1)/(2) - (1)/(4) + (1)/(5) - (1)/(6)) is divided by ((2)/(5) - ...

    Text Solution

    |

  4. If (547.527)/(0.0082) = x, then the value of (547527)/(82) is

    Text Solution

    |

  5. If (50)/("*") = ("*")/(12 (1)/(2)) then the value of * is :

    Text Solution

    |

  6. The value of 0.008 xx 0.01 xx 0.72 div (0.12 xx 0.0004) is :

    Text Solution

    |

  7. The value of (2)/(3) xx (3)/((5)/(6) + (2)/(3)"of 1" (1)/(4)) is :

    Text Solution

    |

  8. (1)/(1 + 2^(a-b)) + (1)/(1 + 2^(b-a)) is

    Text Solution

    |

  9. The value of 25 - 5 [2 + 3 (2 - 2(5 - 3) + 5) - 10] div 4 is :

    Text Solution

    |

  10. Find the value of * in the following 1 (2)/(3) // (2)/(7) xx ("*")/(7)...

    Text Solution

    |

  11. 9 - 1 (2)/(9) "of 3" (3)/(11) + 5 (1)/(7) "of" (7)/(9) is equal to :

    Text Solution

    |

  12. The value of 3 (1)/(2) - [2 (1)/(4) + {1 (1)/(4) - (1)/(2)(1 (1)/(2) -...

    Text Solution

    |

  13. (9)/(20) - [(1)/(5) + {(1)/(4) + ((5)/(6) - bar((1)/(3) + (1)/(2)))}] ...

    Text Solution

    |

  14. (0.8 bar(3) divide 7.5)/(2.3 bar(21) - 0.0bar(98)) is equal to

    Text Solution

    |

  15. For what value of *, statement [(("*"))/(21) xx (("*"))/(189)] = 1 is ...

    Text Solution

    |

  16. If (1120)/(sqrt(P)) = 80, then P is equal to

    Text Solution

    |

  17. 3 (3)/(5) xx 3 (3)/(5) + 2 xx 3 (3)/(5) xx (2)/(5) + (2)/(5) xx (2)/(5...

    Text Solution

    |

  18. Simplify [3 (1)/(4) div {1 (1)/(4) - (1)/(2) (2 (1)/(2) - bar((1)/(4) ...

    Text Solution

    |

  19. The value of (0.1 xx 0.1 xx 0.1 + 0.2 xx 0.2 xx 0.2 + 0.3 xx 0.3 xx 0....

    Text Solution

    |

  20. Find the sum of (1 - (1)/(n + 1)) + (1 - (2)/(n + 1)) + (1 - (3)/(n + ...

    Text Solution

    |