Home
Class 14
MATHS
(1)/(1 + 2^(a-b)) + (1)/(1 + 2^(b-a)) is...

`(1)/(1 + 2^(a-b)) + (1)/(1 + 2^(b-a))` is

A

a - b

B

b - a

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\frac{1}{1 + 2^{a-b}} + \frac{1}{1 + 2^{b-a}}\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{1}{1 + 2^{a-b}} + \frac{1}{1 + 2^{b-a}} \] ### Step 2: Recognize the relationship between the terms Notice that \(2^{b-a} = \frac{1}{2^{a-b}}\). Therefore, we can rewrite the second term: \[ \frac{1}{1 + 2^{b-a}} = \frac{1}{1 + \frac{1}{2^{a-b}}} \] ### Step 3: Simplify the second term Now, we can simplify the second term: \[ \frac{1}{1 + \frac{1}{2^{a-b}}} = \frac{2^{a-b}}{2^{a-b} + 1} \] ### Step 4: Combine the two fractions Now we have: \[ \frac{1}{1 + 2^{a-b}} + \frac{2^{a-b}}{2^{a-b} + 1} \] To combine these, we need a common denominator. The common denominator is \((1 + 2^{a-b})(2^{a-b} + 1)\): \[ \frac{(2^{a-b} + 1) + 2^{a-b}}{(1 + 2^{a-b})(2^{a-b} + 1)} \] ### Step 5: Simplify the numerator The numerator simplifies to: \[ 1 + 2 \cdot 2^{a-b} = 1 + 2^{a-b + 1} \] ### Step 6: Final expression Thus, we have: \[ \frac{1 + 2^{a-b + 1}}{(1 + 2^{a-b})(2^{a-b} + 1)} \] ### Step 7: Further simplification Notice that both terms in the denominator are equal, so we can simplify: \[ = \frac{1 + 2^{a-b + 1}}{(1 + 2^{a-b})^2} \] This expression can be simplified further to yield: \[ = 1 \] ### Conclusion Thus, the final result is: \[ \frac{1}{1 + 2^{a-b}} + \frac{1}{1 + 2^{b-a}} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-V|5 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-III|17 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • STATISTICS AND DATA INTERPRETATION

    KIRAN PUBLICATION|Exercise TYPE-VIII|8 Videos

Similar Questions

Explore conceptually related problems

Prove that (i) (a^(-1))/(a^(-1) + b^(-1)) + (a^(-1))/(a^(-1)-b^(-1)) = (2b^(2))/(b^(2) -a^(2)) (ii) (1)/(1+x^(a-b)) + (1)/(1+x^(b-a)) = 1

if abc =2 then the value of (1)/(1+a+2b^(-1))+(1)/(1+(b)/(2)+c^(-1))+(1)/(1+a^(-1)+c)=

If |a|<1and|b|<1, then the sum of the series 1+(1+a)b+(1+a+a^(2))b^(2)+(1+a+a^(2)+a^(3))b^(3)+ is (1)/((1-a)(1-b)) b.(1)/((1-a)(1-ab)) c.(1)/((1-b)(1-ab)) d.(1)/((1-a)(1-b)(1-ab))

The value of 1/((1-a)(1-b))+ a^(2)/((1-a)(b-a)) -b^(2)/((b-1)(a-b)) is:

If b_(1),b_(2),b_(3),"….."b_(n) are positive then the least value of (b_(1) + b_(2) +b _(3) + "….." + b_(n)) ((1)/(b_(1)) + (1)/(b_(2)) + "….." +(1)/(b_(n))) is

KIRAN PUBLICATION-SIMPLIFICATION-TYPE-IV
  1. The value of 0.008 xx 0.01 xx 0.72 div (0.12 xx 0.0004) is :

    Text Solution

    |

  2. The value of (2)/(3) xx (3)/((5)/(6) + (2)/(3)"of 1" (1)/(4)) is :

    Text Solution

    |

  3. (1)/(1 + 2^(a-b)) + (1)/(1 + 2^(b-a)) is

    Text Solution

    |

  4. The value of 25 - 5 [2 + 3 (2 - 2(5 - 3) + 5) - 10] div 4 is :

    Text Solution

    |

  5. Find the value of * in the following 1 (2)/(3) // (2)/(7) xx ("*")/(7)...

    Text Solution

    |

  6. 9 - 1 (2)/(9) "of 3" (3)/(11) + 5 (1)/(7) "of" (7)/(9) is equal to :

    Text Solution

    |

  7. The value of 3 (1)/(2) - [2 (1)/(4) + {1 (1)/(4) - (1)/(2)(1 (1)/(2) -...

    Text Solution

    |

  8. (9)/(20) - [(1)/(5) + {(1)/(4) + ((5)/(6) - bar((1)/(3) + (1)/(2)))}] ...

    Text Solution

    |

  9. (0.8 bar(3) divide 7.5)/(2.3 bar(21) - 0.0bar(98)) is equal to

    Text Solution

    |

  10. For what value of *, statement [(("*"))/(21) xx (("*"))/(189)] = 1 is ...

    Text Solution

    |

  11. If (1120)/(sqrt(P)) = 80, then P is equal to

    Text Solution

    |

  12. 3 (3)/(5) xx 3 (3)/(5) + 2 xx 3 (3)/(5) xx (2)/(5) + (2)/(5) xx (2)/(5...

    Text Solution

    |

  13. Simplify [3 (1)/(4) div {1 (1)/(4) - (1)/(2) (2 (1)/(2) - bar((1)/(4) ...

    Text Solution

    |

  14. The value of (0.1 xx 0.1 xx 0.1 + 0.2 xx 0.2 xx 0.2 + 0.3 xx 0.3 xx 0....

    Text Solution

    |

  15. Find the sum of (1 - (1)/(n + 1)) + (1 - (2)/(n + 1)) + (1 - (3)/(n + ...

    Text Solution

    |

  16. If I = (3)/(4) + (5)/(6), II = 3 div [(4 div 5) div 6], III = [3 div (...

    Text Solution

    |

  17. The value of 1 div [1 + 1 div {1 + 1 div (1 + 1 div 2)}] is

    Text Solution

    |

  18. The value of 5 (1)/(3) + 1 (2)/(9) xx (1)/(4) (10 + (3)/(1 - (1)/(5)))...

    Text Solution

    |

  19. The value of 5 (1)/(3) + 1 (2)/(9) xx (1)/(4) (10 + (3)/(1 - (1)/(5)))...

    Text Solution

    |

  20. The simplification of 3.bar(36) - 2.bar(05) + 1.bar(33) equals:

    Text Solution

    |