Home
Class 14
MATHS
The value of 3 (1)/(2) - [2 (1)/(4) + {1...

The value of `3 (1)/(2) - [2 (1)/(4) + {1 (1)/(4) - (1)/(2)(1 (1)/(2) - (1)/(3) - (1)/(6))}]` is

A

`(1)/(2)`

B

`2 (1)/(2)`

C

`3 (1)/(2)`

D

`9 (1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 3 \frac{1}{2} - \left[ 2 \frac{1}{4} + \left\{ 1 \frac{1}{4} - \left( \frac{1}{2} \left( 1 \frac{1}{2} - \frac{1}{3} - \frac{1}{6} \right) \right) \right\} \right] \), we will follow the order of operations (BODMAS/BIDMAS). ### Step-by-Step Solution: 1. **Convert Mixed Numbers to Improper Fractions:** - \( 3 \frac{1}{2} = \frac{7}{2} \) - \( 2 \frac{1}{4} = \frac{9}{4} \) - \( 1 \frac{1}{4} = \frac{5}{4} \) - \( 1 \frac{1}{2} = \frac{3}{2} \) So, the expression becomes: \[ \frac{7}{2} - \left[ \frac{9}{4} + \left\{ \frac{5}{4} - \left( \frac{1}{2} \left( \frac{3}{2} - \frac{1}{3} - \frac{1}{6} \right) \right) \right\} \right] \] 2. **Simplify the Inner Bracket:** - First, simplify \( \frac{3}{2} - \frac{1}{3} - \frac{1}{6} \). - Find a common denominator (LCM of 2, 3, and 6 is 6): - Convert \( \frac{3}{2} = \frac{9}{6} \) - Convert \( \frac{1}{3} = \frac{2}{6} \) - Convert \( \frac{1}{6} = \frac{1}{6} \) Now, substituting these values: \[ \frac{9}{6} - \frac{2}{6} - \frac{1}{6} = \frac{9 - 2 - 1}{6} = \frac{6}{6} = 1 \] 3. **Substitute Back:** - Now, substitute \( 1 \) back into the expression: \[ \frac{7}{2} - \left[ \frac{9}{4} + \left\{ \frac{5}{4} - \frac{1}{2} \cdot 1 \right\} \right] \] 4. **Calculate \( \frac{5}{4} - \frac{1}{2} \):** - Convert \( \frac{1}{2} = \frac{2}{4} \): \[ \frac{5}{4} - \frac{2}{4} = \frac{3}{4} \] 5. **Substitute Back Again:** - Now substitute \( \frac{3}{4} \) back into the expression: \[ \frac{7}{2} - \left[ \frac{9}{4} + \frac{3}{4} \right] \] 6. **Combine the Terms Inside the Bracket:** \[ \frac{9}{4} + \frac{3}{4} = \frac{12}{4} = 3 \] 7. **Final Calculation:** - Now we have: \[ \frac{7}{2} - 3 \] - Convert \( 3 \) to a fraction with a denominator of 2: \[ 3 = \frac{6}{2} \] - Now perform the subtraction: \[ \frac{7}{2} - \frac{6}{2} = \frac{1}{2} \] Thus, the final value of the expression is: \[ \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-V|5 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-III|17 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • STATISTICS AND DATA INTERPRETATION

    KIRAN PUBLICATION|Exercise TYPE-VIII|8 Videos

Similar Questions

Explore conceptually related problems

Simplify : 8 (1)/(2)-[3 (1)/(4)-:{1(1)/(4) - (1)/(2) ( 1 (1)/(2)-(1)/(3)-(1)/(6))}]

7(1)/(2)-[2(1)/(4)-:{1(1)/(4)-(1)/(2)((3)/(2)-(1)/(3)-(1)/(6))}]

[[ Simplify: [3(1)/(4)-:{1(1)/(4)-(1)/(2)(2(1)/(2)-(1)/(4)-(1)/(6))}]

7(1)/(2)-[2(1)/(4)-:{1(1)/(4)-(1)/(2)((3)/(2)-bar((1)/(3)-(1)/(6)))}]

[4(1)/(5)-:{1(3)/(4)-(1)/(2)(3(1)/(2)-(1)/(4)-(1)/(6))}]

The value of ((1)/(2)" of "1(1)/(2))-:(3(1)/(2)-1(1)/(4))" of "1(1)/(2)-1(1)/(2)-:2(1)/(4)+1(1)/(3) is:

KIRAN PUBLICATION-SIMPLIFICATION-TYPE-IV
  1. Find the value of * in the following 1 (2)/(3) // (2)/(7) xx ("*")/(7)...

    Text Solution

    |

  2. 9 - 1 (2)/(9) "of 3" (3)/(11) + 5 (1)/(7) "of" (7)/(9) is equal to :

    Text Solution

    |

  3. The value of 3 (1)/(2) - [2 (1)/(4) + {1 (1)/(4) - (1)/(2)(1 (1)/(2) -...

    Text Solution

    |

  4. (9)/(20) - [(1)/(5) + {(1)/(4) + ((5)/(6) - bar((1)/(3) + (1)/(2)))}] ...

    Text Solution

    |

  5. (0.8 bar(3) divide 7.5)/(2.3 bar(21) - 0.0bar(98)) is equal to

    Text Solution

    |

  6. For what value of *, statement [(("*"))/(21) xx (("*"))/(189)] = 1 is ...

    Text Solution

    |

  7. If (1120)/(sqrt(P)) = 80, then P is equal to

    Text Solution

    |

  8. 3 (3)/(5) xx 3 (3)/(5) + 2 xx 3 (3)/(5) xx (2)/(5) + (2)/(5) xx (2)/(5...

    Text Solution

    |

  9. Simplify [3 (1)/(4) div {1 (1)/(4) - (1)/(2) (2 (1)/(2) - bar((1)/(4) ...

    Text Solution

    |

  10. The value of (0.1 xx 0.1 xx 0.1 + 0.2 xx 0.2 xx 0.2 + 0.3 xx 0.3 xx 0....

    Text Solution

    |

  11. Find the sum of (1 - (1)/(n + 1)) + (1 - (2)/(n + 1)) + (1 - (3)/(n + ...

    Text Solution

    |

  12. If I = (3)/(4) + (5)/(6), II = 3 div [(4 div 5) div 6], III = [3 div (...

    Text Solution

    |

  13. The value of 1 div [1 + 1 div {1 + 1 div (1 + 1 div 2)}] is

    Text Solution

    |

  14. The value of 5 (1)/(3) + 1 (2)/(9) xx (1)/(4) (10 + (3)/(1 - (1)/(5)))...

    Text Solution

    |

  15. The value of 5 (1)/(3) + 1 (2)/(9) xx (1)/(4) (10 + (3)/(1 - (1)/(5)))...

    Text Solution

    |

  16. The simplification of 3.bar(36) - 2.bar(05) + 1.bar(33) equals:

    Text Solution

    |

  17. If x [-2 {-4(-a)}] + 5[-2{-2(-a)}] = 4a, then x =

    Text Solution

    |

  18. The simplification of (0.bar1)^2{1-9(0.1bar6)^2} is

    Text Solution

    |

  19. If '+' means 'div', 'xx', means '-', 'div' means 'xx' and '-' means '+...

    Text Solution

    |

  20. The value of [0.9-{2.3-3.2-(7.1 - 5.4 - 3.5)}] is: [0.9-{2.3-3.2-(7....

    Text Solution

    |