Home
Class 14
MATHS
Simplify [3 (1)/(4) div {1 (1)/(4) - (1)...

Simplify `[3 (1)/(4) div {1 (1)/(4) - (1)/(2) (2 (1)/(2) - bar((1)/(4) - (1)/(6)))}] div ((1)/(2)"of 4" (1)/(3))`

A

18

B

36

C

39

D

78

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \left[ 3 \frac{1}{4} \div \left\{ 1 \frac{1}{4} - \frac{1}{2} \left( 2 \frac{1}{2} - \bar{\left( \frac{1}{4} - \frac{1}{6} \right)} \right) \right\} \right] \div \left( \frac{1}{2} \text{ of } 4 \frac{1}{3} \right) \] we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions Convert all mixed numbers to improper fractions: - \( 3 \frac{1}{4} = \frac{13}{4} \) - \( 1 \frac{1}{4} = \frac{5}{4} \) - \( 2 \frac{1}{2} = \frac{5}{2} \) - \( 4 \frac{1}{3} = \frac{13}{3} \) Now the expression becomes: \[ \left[ \frac{13}{4} \div \left\{ \frac{5}{4} - \frac{1}{2} \left( \frac{5}{2} - \bar{\left( \frac{1}{4} - \frac{1}{6} \right)} \right) \right\} \right] \div \left( \frac{1}{2} \text{ of } \frac{13}{3} \right) \] ### Step 2: Solve the Inner Bracket First, simplify \( \frac{1}{4} - \frac{1}{6} \): To find the LCM of 4 and 6, we get 12. Thus, \[ \frac{1}{4} = \frac{3}{12}, \quad \frac{1}{6} = \frac{2}{12} \implies \frac{1}{4} - \frac{1}{6} = \frac{3}{12} - \frac{2}{12} = \frac{1}{12} \] Now, substitute back into the expression: \[ \left[ \frac{13}{4} \div \left\{ \frac{5}{4} - \frac{1}{2} \left( \frac{5}{2} - \frac{1}{12} \right) \right\} \right] \div \left( \frac{1}{2} \text{ of } \frac{13}{3} \right) \] ### Step 3: Simplify \( \frac{5}{2} - \frac{1}{12} \) Finding the LCM of 2 and 12 gives us 12: \[ \frac{5}{2} = \frac{30}{12} \implies \frac{5}{2} - \frac{1}{12} = \frac{30}{12} - \frac{1}{12} = \frac{29}{12} \] ### Step 4: Substitute Back Now substitute back into the expression: \[ \left[ \frac{13}{4} \div \left\{ \frac{5}{4} - \frac{1}{2} \cdot \frac{29}{12} \right\} \right] \div \left( \frac{1}{2} \cdot \frac{13}{3} \right) \] ### Step 5: Calculate \( \frac{1}{2} \cdot \frac{29}{12} \) \[ \frac{1}{2} \cdot \frac{29}{12} = \frac{29}{24} \] ### Step 6: Solve \( \frac{5}{4} - \frac{29}{24} \) Finding the LCM of 4 and 24 gives us 24: \[ \frac{5}{4} = \frac{30}{24} \implies \frac{5}{4} - \frac{29}{24} = \frac{30}{24} - \frac{29}{24} = \frac{1}{24} \] ### Step 7: Substitute Back Again Now substitute back into the expression: \[ \left[ \frac{13}{4} \div \frac{1}{24} \right] \div \left( \frac{1}{2} \cdot \frac{13}{3} \right) \] ### Step 8: Calculate \( \frac{13}{4} \div \frac{1}{24} \) Dividing by a fraction is the same as multiplying by its reciprocal: \[ \frac{13}{4} \div \frac{1}{24} = \frac{13}{4} \cdot 24 = \frac{13 \cdot 24}{4} = \frac{312}{4} = 78 \] ### Step 9: Calculate \( \frac{1}{2} \cdot \frac{13}{3} \) \[ \frac{1}{2} \cdot \frac{13}{3} = \frac{13}{6} \] ### Step 10: Final Division Now we have: \[ 78 \div \frac{13}{6} = 78 \cdot \frac{6}{13} = \frac{468}{13} = 36 \] ### Final Answer The simplified result is: \[ \boxed{36} \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-V|5 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-III|17 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • STATISTICS AND DATA INTERPRETATION

    KIRAN PUBLICATION|Exercise TYPE-VIII|8 Videos

Similar Questions

Explore conceptually related problems

Simplify : 8 (1)/(2)-[3 (1)/(4)-:{1(1)/(4) - (1)/(2) ( 1 (1)/(2)-(1)/(3)-(1)/(6))}]

7(1)/(2)-[2(1)/(4)-:{1(1)/(4)-(1)/(2)((3)/(2)-bar((1)/(3)-(1)/(6)))}]

[[ Simplify: [3(1)/(4)-:{1(1)/(4)-(1)/(2)(2(1)/(2)-(1)/(4)-(1)/(6))}]

Simplify ([3(1)/(4)+[1(1)/(4)-0.5(2(1)/(2)-bar((1)/(4)-(1)/(6)))}])/(4xx(1)/(12))

[ 1 (1)/(4) div 1 (1)/(2) ] + [ 2 (1)/(3) xx 1 (3)/(4) ]=

Find the value of [6 1/4 div {2 1/4 - 1/2(2 1/2 - bar(1/4 - 1/6))}] .

KIRAN PUBLICATION-SIMPLIFICATION-TYPE-IV
  1. If (1120)/(sqrt(P)) = 80, then P is equal to

    Text Solution

    |

  2. 3 (3)/(5) xx 3 (3)/(5) + 2 xx 3 (3)/(5) xx (2)/(5) + (2)/(5) xx (2)/(5...

    Text Solution

    |

  3. Simplify [3 (1)/(4) div {1 (1)/(4) - (1)/(2) (2 (1)/(2) - bar((1)/(4) ...

    Text Solution

    |

  4. The value of (0.1 xx 0.1 xx 0.1 + 0.2 xx 0.2 xx 0.2 + 0.3 xx 0.3 xx 0....

    Text Solution

    |

  5. Find the sum of (1 - (1)/(n + 1)) + (1 - (2)/(n + 1)) + (1 - (3)/(n + ...

    Text Solution

    |

  6. If I = (3)/(4) + (5)/(6), II = 3 div [(4 div 5) div 6], III = [3 div (...

    Text Solution

    |

  7. The value of 1 div [1 + 1 div {1 + 1 div (1 + 1 div 2)}] is

    Text Solution

    |

  8. The value of 5 (1)/(3) + 1 (2)/(9) xx (1)/(4) (10 + (3)/(1 - (1)/(5)))...

    Text Solution

    |

  9. The value of 5 (1)/(3) + 1 (2)/(9) xx (1)/(4) (10 + (3)/(1 - (1)/(5)))...

    Text Solution

    |

  10. The simplification of 3.bar(36) - 2.bar(05) + 1.bar(33) equals:

    Text Solution

    |

  11. If x [-2 {-4(-a)}] + 5[-2{-2(-a)}] = 4a, then x =

    Text Solution

    |

  12. The simplification of (0.bar1)^2{1-9(0.1bar6)^2} is

    Text Solution

    |

  13. If '+' means 'div', 'xx', means '-', 'div' means 'xx' and '-' means '+...

    Text Solution

    |

  14. The value of [0.9-{2.3-3.2-(7.1 - 5.4 - 3.5)}] is: [0.9-{2.3-3.2-(7....

    Text Solution

    |

  15. (32)^(3) + (79)^(3) - (111)^(3) + 3 xx 32 xx 79 xx 111 is equal to

    Text Solution

    |

  16. ((5)/(2) + (3)/(2)) ((25)/(4) - (15)/(4) + (9)/(4)) is equal to

    Text Solution

    |

  17. (0.2 xx 0.2 + 0.01) (0.1 xx 0.1 + 0.02)^(-1) is equal to

    Text Solution

    |

  18. (1)/(2) + {4 (3)/(4) - (4 (1)/(6) - 2 (1)/(3))} is equal to

    Text Solution

    |

  19. The simplification of (1)/(8) + (1)/(8^(2)) + (1)/(8^(3)) + (1)/(8^(4)...

    Text Solution

    |

  20. 8.7 - [7.6 - {6.5 - (5.4 - bar(4.3 - 2))}] is simplified to :

    Text Solution

    |